Description: F is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem36.a | |
|
fourierdlem36.assr | |
||
fourierdlem36.f | |
||
fourierdlem36.n | |
||
Assertion | fourierdlem36 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem36.a | |
|
2 | fourierdlem36.assr | |
|
3 | fourierdlem36.f | |
|
4 | fourierdlem36.n | |
|
5 | ltso | |
|
6 | soss | |
|
7 | 2 5 6 | mpisyl | |
8 | 0zd | |
|
9 | eqid | |
|
10 | 1 7 8 9 | fzisoeu | |
11 | hashcl | |
|
12 | 1 11 | syl | |
13 | 12 | nn0cnd | |
14 | 1cnd | |
|
15 | 13 14 | negsubd | |
16 | df-neg | |
|
17 | 16 | eqcomi | |
18 | 17 | oveq2i | |
19 | 15 18 4 | 3eqtr4g | |
20 | 19 | oveq2d | |
21 | isoeq4 | |
|
22 | 20 21 | syl | |
23 | 22 | eubidv | |
24 | 10 23 | mpbid | |
25 | iotacl | |
|
26 | 24 25 | syl | |
27 | 3 26 | eqeltrid | |
28 | iotaex | |
|
29 | 3 28 | eqeltri | |
30 | isoeq1 | |
|
31 | 29 30 | elab | |
32 | 27 31 | sylib | |