Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem37.p |
|
2 |
|
fourierdlem37.m |
|
3 |
|
fourierdlem37.q |
|
4 |
|
fourierdlem37.t |
|
5 |
|
fourierdlem37.e |
|
6 |
|
fourierdlem37.l |
|
7 |
|
fourierdlem37.i |
|
8 |
|
ssrab2 |
|
9 |
|
ltso |
|
10 |
9
|
a1i |
|
11 |
|
fzfi |
|
12 |
|
fzossfz |
|
13 |
8 12
|
sstri |
|
14 |
|
ssfi |
|
15 |
11 13 14
|
mp2an |
|
16 |
15
|
a1i |
|
17 |
|
0zd |
|
18 |
2
|
nnzd |
|
19 |
2
|
nngt0d |
|
20 |
|
fzolb |
|
21 |
17 18 19 20
|
syl3anbrc |
|
22 |
21
|
adantr |
|
23 |
1
|
fourierdlem2 |
|
24 |
2 23
|
syl |
|
25 |
3 24
|
mpbid |
|
26 |
25
|
simprd |
|
27 |
26
|
simplld |
|
28 |
1 2 3
|
fourierdlem11 |
|
29 |
28
|
simp1d |
|
30 |
27 29
|
eqeltrd |
|
31 |
30 27
|
eqled |
|
32 |
31
|
ad2antrr |
|
33 |
|
iftrue |
|
34 |
33
|
eqcomd |
|
35 |
34
|
adantl |
|
36 |
32 35
|
breqtrd |
|
37 |
30
|
adantr |
|
38 |
29
|
adantr |
|
39 |
38
|
rexrd |
|
40 |
28
|
simp2d |
|
41 |
40
|
adantr |
|
42 |
|
iocssre |
|
43 |
39 41 42
|
syl2anc |
|
44 |
28
|
simp3d |
|
45 |
29 40 44 4 5
|
fourierdlem4 |
|
46 |
45
|
ffvelrnda |
|
47 |
43 46
|
sseldd |
|
48 |
27
|
adantr |
|
49 |
|
elioc2 |
|
50 |
39 41 49
|
syl2anc |
|
51 |
46 50
|
mpbid |
|
52 |
51
|
simp2d |
|
53 |
48 52
|
eqbrtrd |
|
54 |
37 47 53
|
ltled |
|
55 |
54
|
adantr |
|
56 |
|
iffalse |
|
57 |
56
|
eqcomd |
|
58 |
57
|
adantl |
|
59 |
55 58
|
breqtrd |
|
60 |
36 59
|
pm2.61dan |
|
61 |
6
|
a1i |
|
62 |
|
eqeq1 |
|
63 |
|
id |
|
64 |
62 63
|
ifbieq2d |
|
65 |
64
|
adantl |
|
66 |
38 47
|
ifcld |
|
67 |
61 65 46 66
|
fvmptd |
|
68 |
60 67
|
breqtrrd |
|
69 |
|
fveq2 |
|
70 |
69
|
breq1d |
|
71 |
70
|
elrab |
|
72 |
22 68 71
|
sylanbrc |
|
73 |
72
|
ne0d |
|
74 |
|
fzssz |
|
75 |
12 74
|
sstri |
|
76 |
|
zssre |
|
77 |
75 76
|
sstri |
|
78 |
8 77
|
sstri |
|
79 |
78
|
a1i |
|
80 |
|
fisupcl |
|
81 |
10 16 73 79 80
|
syl13anc |
|
82 |
8 81
|
sseldi |
|
83 |
82 7
|
fmptd |
|
84 |
81
|
ex |
|
85 |
83 84
|
jca |
|