Metamath Proof Explorer


Theorem fourierdlem37

Description: I is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem37.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem37.m φM
fourierdlem37.q φQPM
fourierdlem37.t T=BA
fourierdlem37.e E=xx+BxTT
fourierdlem37.l L=yABify=BAy
fourierdlem37.i I=xsupi0..^M|QiLEx<
Assertion fourierdlem37 φI:0..^Mxsupi0..^M|QiLEx<i0..^M|QiLEx

Proof

Step Hyp Ref Expression
1 fourierdlem37.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem37.m φM
3 fourierdlem37.q φQPM
4 fourierdlem37.t T=BA
5 fourierdlem37.e E=xx+BxTT
6 fourierdlem37.l L=yABify=BAy
7 fourierdlem37.i I=xsupi0..^M|QiLEx<
8 ssrab2 i0..^M|QiLEx0..^M
9 ltso <Or
10 9 a1i φx<Or
11 fzfi 0MFin
12 fzossfz 0..^M0M
13 8 12 sstri i0..^M|QiLEx0M
14 ssfi 0MFini0..^M|QiLEx0Mi0..^M|QiLExFin
15 11 13 14 mp2an i0..^M|QiLExFin
16 15 a1i φxi0..^M|QiLExFin
17 0zd φ0
18 2 nnzd φM
19 2 nngt0d φ0<M
20 fzolb 00..^M0M0<M
21 17 18 19 20 syl3anbrc φ00..^M
22 21 adantr φx00..^M
23 1 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
24 2 23 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
25 3 24 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
26 25 simprd φQ0=AQM=Bi0..^MQi<Qi+1
27 26 simplld φQ0=A
28 1 2 3 fourierdlem11 φABA<B
29 28 simp1d φA
30 27 29 eqeltrd φQ0
31 30 27 eqled φQ0A
32 31 ad2antrr φxEx=BQ0A
33 iftrue Ex=BifEx=BAEx=A
34 33 eqcomd Ex=BA=ifEx=BAEx
35 34 adantl φxEx=BA=ifEx=BAEx
36 32 35 breqtrd φxEx=BQ0ifEx=BAEx
37 30 adantr φxQ0
38 29 adantr φxA
39 38 rexrd φxA*
40 28 simp2d φB
41 40 adantr φxB
42 iocssre A*BAB
43 39 41 42 syl2anc φxAB
44 28 simp3d φA<B
45 29 40 44 4 5 fourierdlem4 φE:AB
46 45 ffvelcdmda φxExAB
47 43 46 sseldd φxEx
48 27 adantr φxQ0=A
49 elioc2 A*BExABExA<ExExB
50 39 41 49 syl2anc φxExABExA<ExExB
51 46 50 mpbid φxExA<ExExB
52 51 simp2d φxA<Ex
53 48 52 eqbrtrd φxQ0<Ex
54 37 47 53 ltled φxQ0Ex
55 54 adantr φx¬Ex=BQ0Ex
56 iffalse ¬Ex=BifEx=BAEx=Ex
57 56 eqcomd ¬Ex=BEx=ifEx=BAEx
58 57 adantl φx¬Ex=BEx=ifEx=BAEx
59 55 58 breqtrd φx¬Ex=BQ0ifEx=BAEx
60 36 59 pm2.61dan φxQ0ifEx=BAEx
61 6 a1i φxL=yABify=BAy
62 eqeq1 y=Exy=BEx=B
63 id y=Exy=Ex
64 62 63 ifbieq2d y=Exify=BAy=ifEx=BAEx
65 64 adantl φxy=Exify=BAy=ifEx=BAEx
66 38 47 ifcld φxifEx=BAEx
67 61 65 46 66 fvmptd φxLEx=ifEx=BAEx
68 60 67 breqtrrd φxQ0LEx
69 fveq2 i=0Qi=Q0
70 69 breq1d i=0QiLExQ0LEx
71 70 elrab 0i0..^M|QiLEx00..^MQ0LEx
72 22 68 71 sylanbrc φx0i0..^M|QiLEx
73 72 ne0d φxi0..^M|QiLEx
74 fzssz 0M
75 12 74 sstri 0..^M
76 zssre
77 75 76 sstri 0..^M
78 8 77 sstri i0..^M|QiLEx
79 78 a1i φxi0..^M|QiLEx
80 fisupcl <Ori0..^M|QiLExFini0..^M|QiLExi0..^M|QiLExsupi0..^M|QiLEx<i0..^M|QiLEx
81 10 16 73 79 80 syl13anc φxsupi0..^M|QiLEx<i0..^M|QiLEx
82 8 81 sselid φxsupi0..^M|QiLEx<0..^M
83 82 7 fmptd φI:0..^M
84 81 ex φxsupi0..^M|QiLEx<i0..^M|QiLEx
85 83 84 jca φI:0..^Mxsupi0..^M|QiLEx<i0..^M|QiLEx