Metamath Proof Explorer


Theorem fourierdlem38

Description: The function F is continuous on every interval induced by the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem38.cn φF:domFcn
fourierdlem38.p P=np0n|p0=πpn=πi0..^npi<pi+1
fourierdlem38.m φM
fourierdlem38.q φQPM
fourierdlem38.h H=AππdomF
fourierdlem38.ranq φranQ=H
Assertion fourierdlem38 φi0..^MFQiQi+1:QiQi+1cn

Proof

Step Hyp Ref Expression
1 fourierdlem38.cn φF:domFcn
2 fourierdlem38.p P=np0n|p0=πpn=πi0..^npi<pi+1
3 fourierdlem38.m φM
4 fourierdlem38.q φQPM
5 fourierdlem38.h H=AππdomF
6 fourierdlem38.ranq φranQ=H
7 simplr φi0..^MxQiQi+1¬xdomFxQiQi+1
8 simplll φi0..^MxQiQi+1¬xdomFφ
9 ioossicc QiQi+1QiQi+1
10 pire π
11 10 renegcli π
12 11 rexri π*
13 12 a1i φi0..^Mπ*
14 10 rexri π*
15 14 a1i φi0..^Mπ*
16 2 3 4 fourierdlem15 φQ:0Mππ
17 16 adantr φi0..^MQ:0Mππ
18 simpr φi0..^Mi0..^M
19 13 15 17 18 fourierdlem8 φi0..^MQiQi+1ππ
20 9 19 sstrid φi0..^MQiQi+1ππ
21 20 sselda φi0..^MxQiQi+1xππ
22 21 adantr φi0..^MxQiQi+1¬xdomFxππ
23 simpr φi0..^MxQiQi+1¬xdomF¬xdomF
24 simpllr φi0..^MxQiQi+1¬xdomFi0..^M
25 3 3ad2ant1 φxππ¬xdomFM
26 4 3ad2ant1 φxππ¬xdomFQPM
27 simp2 φxππ¬xdomFxππ
28 simp3 φxππ¬xdomF¬xdomF
29 27 28 eldifd φxππ¬xdomFxππdomF
30 elun2 xππdomFxAππdomF
31 29 30 syl φxππ¬xdomFxAππdomF
32 6 5 eqtr2di φAππdomF=ranQ
33 32 3ad2ant1 φxππ¬xdomFAππdomF=ranQ
34 31 33 eleqtrd φxππ¬xdomFxranQ
35 2 25 26 34 fourierdlem12 φxππ¬xdomFi0..^M¬xQiQi+1
36 8 22 23 24 35 syl31anc φi0..^MxQiQi+1¬xdomF¬xQiQi+1
37 7 36 condan φi0..^MxQiQi+1xdomF
38 37 ralrimiva φi0..^MxQiQi+1xdomF
39 dfss3 QiQi+1domFxQiQi+1xdomF
40 38 39 sylibr φi0..^MQiQi+1domF
41 1 adantr φi0..^MF:domFcn
42 rescncf QiQi+1domFF:domFcnFQiQi+1:QiQi+1cn
43 40 41 42 sylc φi0..^MFQiQi+1:QiQi+1cn