| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem38.cn |
|- ( ph -> F e. ( dom F -cn-> CC ) ) |
| 2 |
|
fourierdlem38.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 3 |
|
fourierdlem38.m |
|- ( ph -> M e. NN ) |
| 4 |
|
fourierdlem38.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 5 |
|
fourierdlem38.h |
|- H = ( A u. ( ( -u _pi [,] _pi ) \ dom F ) ) |
| 6 |
|
fourierdlem38.ranq |
|- ( ph -> ran Q = H ) |
| 7 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 8 |
|
simplll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ -. x e. dom F ) -> ph ) |
| 9 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 10 |
|
pire |
|- _pi e. RR |
| 11 |
10
|
renegcli |
|- -u _pi e. RR |
| 12 |
11
|
rexri |
|- -u _pi e. RR* |
| 13 |
12
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
| 14 |
10
|
rexri |
|- _pi e. RR* |
| 15 |
14
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
| 16 |
2 3 4
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 19 |
13 15 17 18
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 20 |
9 19
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 21 |
20
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( -u _pi [,] _pi ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ( -u _pi [,] _pi ) ) |
| 23 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ -. x e. dom F ) -> -. x e. dom F ) |
| 24 |
|
simpllr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ -. x e. dom F ) -> i e. ( 0 ..^ M ) ) |
| 25 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> M e. NN ) |
| 26 |
4
|
3ad2ant1 |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> Q e. ( P ` M ) ) |
| 27 |
|
simp2 |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> x e. ( -u _pi [,] _pi ) ) |
| 28 |
|
simp3 |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> -. x e. dom F ) |
| 29 |
27 28
|
eldifd |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> x e. ( ( -u _pi [,] _pi ) \ dom F ) ) |
| 30 |
|
elun2 |
|- ( x e. ( ( -u _pi [,] _pi ) \ dom F ) -> x e. ( A u. ( ( -u _pi [,] _pi ) \ dom F ) ) ) |
| 31 |
29 30
|
syl |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> x e. ( A u. ( ( -u _pi [,] _pi ) \ dom F ) ) ) |
| 32 |
6 5
|
eqtr2di |
|- ( ph -> ( A u. ( ( -u _pi [,] _pi ) \ dom F ) ) = ran Q ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> ( A u. ( ( -u _pi [,] _pi ) \ dom F ) ) = ran Q ) |
| 34 |
31 33
|
eleqtrd |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) -> x e. ran Q ) |
| 35 |
2 25 26 34
|
fourierdlem12 |
|- ( ( ( ph /\ x e. ( -u _pi [,] _pi ) /\ -. x e. dom F ) /\ i e. ( 0 ..^ M ) ) -> -. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 36 |
8 22 23 24 35
|
syl31anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ -. x e. dom F ) -> -. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 37 |
7 36
|
condan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. dom F ) |
| 38 |
37
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x e. dom F ) |
| 39 |
|
dfss3 |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x e. dom F ) |
| 40 |
38 39
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
| 41 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F e. ( dom F -cn-> CC ) ) |
| 42 |
|
rescncf |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F -> ( F e. ( dom F -cn-> CC ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) ) |
| 43 |
40 41 42
|
sylc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |