| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem38.cn |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 2 |
|
fourierdlem38.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 3 |
|
fourierdlem38.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem38.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem38.h |
⊢ 𝐻 = ( 𝐴 ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) |
| 6 |
|
fourierdlem38.ranq |
⊢ ( 𝜑 → ran 𝑄 = 𝐻 ) |
| 7 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 8 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝜑 ) |
| 9 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 10 |
|
pire |
⊢ π ∈ ℝ |
| 11 |
10
|
renegcli |
⊢ - π ∈ ℝ |
| 12 |
11
|
rexri |
⊢ - π ∈ ℝ* |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
| 14 |
10
|
rexri |
⊢ π ∈ ℝ* |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
| 16 |
2 3 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 19 |
13 15 17 18
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 20 |
9 19
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 21 |
20
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( - π [,] π ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( - π [,] π ) ) |
| 23 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → ¬ 𝑥 ∈ dom 𝐹 ) |
| 24 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 25 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑀 ∈ ℕ ) |
| 26 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( - π [,] π ) ) |
| 28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → ¬ 𝑥 ∈ dom 𝐹 ) |
| 29 |
27 28
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( ( - π [,] π ) ∖ dom 𝐹 ) ) |
| 30 |
|
elun2 |
⊢ ( 𝑥 ∈ ( ( - π [,] π ) ∖ dom 𝐹 ) → 𝑥 ∈ ( 𝐴 ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ( 𝐴 ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) ) |
| 32 |
6 5
|
eqtr2di |
⊢ ( 𝜑 → ( 𝐴 ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) = ran 𝑄 ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → ( 𝐴 ∪ ( ( - π [,] π ) ∖ dom 𝐹 ) ) = ran 𝑄 ) |
| 34 |
31 33
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ran 𝑄 ) |
| 35 |
2 25 26 34
|
fourierdlem12 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 36 |
8 22 23 24 35
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → ¬ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 37 |
7 36
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ dom 𝐹 ) |
| 38 |
37
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
| 39 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 ∈ dom 𝐹 ) |
| 40 |
38 39
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
| 41 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 42 |
|
rescncf |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 → ( 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ) |
| 43 |
40 41 42
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |