| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem37.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 2 |
|
fourierdlem37.m |
|- ( ph -> M e. NN ) |
| 3 |
|
fourierdlem37.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 4 |
|
fourierdlem37.t |
|- T = ( B - A ) |
| 5 |
|
fourierdlem37.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 6 |
|
fourierdlem37.l |
|- L = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) |
| 7 |
|
fourierdlem37.i |
|- I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) ) |
| 8 |
|
ssrab2 |
|- { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } C_ ( 0 ..^ M ) |
| 9 |
|
ltso |
|- < Or RR |
| 10 |
9
|
a1i |
|- ( ( ph /\ x e. RR ) -> < Or RR ) |
| 11 |
|
fzfi |
|- ( 0 ... M ) e. Fin |
| 12 |
|
fzossfz |
|- ( 0 ..^ M ) C_ ( 0 ... M ) |
| 13 |
8 12
|
sstri |
|- { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } C_ ( 0 ... M ) |
| 14 |
|
ssfi |
|- ( ( ( 0 ... M ) e. Fin /\ { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } C_ ( 0 ... M ) ) -> { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } e. Fin ) |
| 15 |
11 13 14
|
mp2an |
|- { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } e. Fin |
| 16 |
15
|
a1i |
|- ( ( ph /\ x e. RR ) -> { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } e. Fin ) |
| 17 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 18 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 19 |
2
|
nngt0d |
|- ( ph -> 0 < M ) |
| 20 |
|
fzolb |
|- ( 0 e. ( 0 ..^ M ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
| 21 |
17 18 19 20
|
syl3anbrc |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ x e. RR ) -> 0 e. ( 0 ..^ M ) ) |
| 23 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 24 |
2 23
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 25 |
3 24
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 26 |
25
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 27 |
26
|
simplld |
|- ( ph -> ( Q ` 0 ) = A ) |
| 28 |
1 2 3
|
fourierdlem11 |
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |
| 29 |
28
|
simp1d |
|- ( ph -> A e. RR ) |
| 30 |
27 29
|
eqeltrd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 31 |
30 27
|
eqled |
|- ( ph -> ( Q ` 0 ) <_ A ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( ph /\ x e. RR ) /\ ( E ` x ) = B ) -> ( Q ` 0 ) <_ A ) |
| 33 |
|
iftrue |
|- ( ( E ` x ) = B -> if ( ( E ` x ) = B , A , ( E ` x ) ) = A ) |
| 34 |
33
|
eqcomd |
|- ( ( E ` x ) = B -> A = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 35 |
34
|
adantl |
|- ( ( ( ph /\ x e. RR ) /\ ( E ` x ) = B ) -> A = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 36 |
32 35
|
breqtrd |
|- ( ( ( ph /\ x e. RR ) /\ ( E ` x ) = B ) -> ( Q ` 0 ) <_ if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 37 |
30
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( Q ` 0 ) e. RR ) |
| 38 |
29
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. RR ) |
| 39 |
38
|
rexrd |
|- ( ( ph /\ x e. RR ) -> A e. RR* ) |
| 40 |
28
|
simp2d |
|- ( ph -> B e. RR ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. RR ) |
| 42 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( A (,] B ) C_ RR ) |
| 44 |
28
|
simp3d |
|- ( ph -> A < B ) |
| 45 |
29 40 44 4 5
|
fourierdlem4 |
|- ( ph -> E : RR --> ( A (,] B ) ) |
| 46 |
45
|
ffvelcdmda |
|- ( ( ph /\ x e. RR ) -> ( E ` x ) e. ( A (,] B ) ) |
| 47 |
43 46
|
sseldd |
|- ( ( ph /\ x e. RR ) -> ( E ` x ) e. RR ) |
| 48 |
27
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( Q ` 0 ) = A ) |
| 49 |
|
elioc2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( E ` x ) e. ( A (,] B ) <-> ( ( E ` x ) e. RR /\ A < ( E ` x ) /\ ( E ` x ) <_ B ) ) ) |
| 50 |
39 41 49
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( ( E ` x ) e. ( A (,] B ) <-> ( ( E ` x ) e. RR /\ A < ( E ` x ) /\ ( E ` x ) <_ B ) ) ) |
| 51 |
46 50
|
mpbid |
|- ( ( ph /\ x e. RR ) -> ( ( E ` x ) e. RR /\ A < ( E ` x ) /\ ( E ` x ) <_ B ) ) |
| 52 |
51
|
simp2d |
|- ( ( ph /\ x e. RR ) -> A < ( E ` x ) ) |
| 53 |
48 52
|
eqbrtrd |
|- ( ( ph /\ x e. RR ) -> ( Q ` 0 ) < ( E ` x ) ) |
| 54 |
37 47 53
|
ltled |
|- ( ( ph /\ x e. RR ) -> ( Q ` 0 ) <_ ( E ` x ) ) |
| 55 |
54
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ -. ( E ` x ) = B ) -> ( Q ` 0 ) <_ ( E ` x ) ) |
| 56 |
|
iffalse |
|- ( -. ( E ` x ) = B -> if ( ( E ` x ) = B , A , ( E ` x ) ) = ( E ` x ) ) |
| 57 |
56
|
eqcomd |
|- ( -. ( E ` x ) = B -> ( E ` x ) = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 58 |
57
|
adantl |
|- ( ( ( ph /\ x e. RR ) /\ -. ( E ` x ) = B ) -> ( E ` x ) = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 59 |
55 58
|
breqtrd |
|- ( ( ( ph /\ x e. RR ) /\ -. ( E ` x ) = B ) -> ( Q ` 0 ) <_ if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 60 |
36 59
|
pm2.61dan |
|- ( ( ph /\ x e. RR ) -> ( Q ` 0 ) <_ if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 61 |
6
|
a1i |
|- ( ( ph /\ x e. RR ) -> L = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ) |
| 62 |
|
eqeq1 |
|- ( y = ( E ` x ) -> ( y = B <-> ( E ` x ) = B ) ) |
| 63 |
|
id |
|- ( y = ( E ` x ) -> y = ( E ` x ) ) |
| 64 |
62 63
|
ifbieq2d |
|- ( y = ( E ` x ) -> if ( y = B , A , y ) = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 65 |
64
|
adantl |
|- ( ( ( ph /\ x e. RR ) /\ y = ( E ` x ) ) -> if ( y = B , A , y ) = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 66 |
38 47
|
ifcld |
|- ( ( ph /\ x e. RR ) -> if ( ( E ` x ) = B , A , ( E ` x ) ) e. RR ) |
| 67 |
61 65 46 66
|
fvmptd |
|- ( ( ph /\ x e. RR ) -> ( L ` ( E ` x ) ) = if ( ( E ` x ) = B , A , ( E ` x ) ) ) |
| 68 |
60 67
|
breqtrrd |
|- ( ( ph /\ x e. RR ) -> ( Q ` 0 ) <_ ( L ` ( E ` x ) ) ) |
| 69 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
| 70 |
69
|
breq1d |
|- ( i = 0 -> ( ( Q ` i ) <_ ( L ` ( E ` x ) ) <-> ( Q ` 0 ) <_ ( L ` ( E ` x ) ) ) ) |
| 71 |
70
|
elrab |
|- ( 0 e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } <-> ( 0 e. ( 0 ..^ M ) /\ ( Q ` 0 ) <_ ( L ` ( E ` x ) ) ) ) |
| 72 |
22 68 71
|
sylanbrc |
|- ( ( ph /\ x e. RR ) -> 0 e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } ) |
| 73 |
72
|
ne0d |
|- ( ( ph /\ x e. RR ) -> { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } =/= (/) ) |
| 74 |
|
fzssz |
|- ( 0 ... M ) C_ ZZ |
| 75 |
12 74
|
sstri |
|- ( 0 ..^ M ) C_ ZZ |
| 76 |
|
zssre |
|- ZZ C_ RR |
| 77 |
75 76
|
sstri |
|- ( 0 ..^ M ) C_ RR |
| 78 |
8 77
|
sstri |
|- { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } C_ RR |
| 79 |
78
|
a1i |
|- ( ( ph /\ x e. RR ) -> { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } C_ RR ) |
| 80 |
|
fisupcl |
|- ( ( < Or RR /\ ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } e. Fin /\ { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } =/= (/) /\ { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } C_ RR ) ) -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } ) |
| 81 |
10 16 73 79 80
|
syl13anc |
|- ( ( ph /\ x e. RR ) -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } ) |
| 82 |
8 81
|
sselid |
|- ( ( ph /\ x e. RR ) -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) e. ( 0 ..^ M ) ) |
| 83 |
82 7
|
fmptd |
|- ( ph -> I : RR --> ( 0 ..^ M ) ) |
| 84 |
81
|
ex |
|- ( ph -> ( x e. RR -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } ) ) |
| 85 |
83 84
|
jca |
|- ( ph -> ( I : RR --> ( 0 ..^ M ) /\ ( x e. RR -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } ) ) ) |