Metamath Proof Explorer


Theorem fourierdlem37

Description: I is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem37.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem37.m ( 𝜑𝑀 ∈ ℕ )
fourierdlem37.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
fourierdlem37.t 𝑇 = ( 𝐵𝐴 )
fourierdlem37.e 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
fourierdlem37.l 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) )
fourierdlem37.i 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) )
Assertion fourierdlem37 ( 𝜑 → ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 fourierdlem37.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
2 fourierdlem37.m ( 𝜑𝑀 ∈ ℕ )
3 fourierdlem37.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
4 fourierdlem37.t 𝑇 = ( 𝐵𝐴 )
5 fourierdlem37.e 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
6 fourierdlem37.l 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) )
7 fourierdlem37.i 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) )
8 ssrab2 { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ⊆ ( 0 ..^ 𝑀 )
9 ltso < Or ℝ
10 9 a1i ( ( 𝜑𝑥 ∈ ℝ ) → < Or ℝ )
11 fzfi ( 0 ... 𝑀 ) ∈ Fin
12 fzossfz ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 )
13 8 12 sstri { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ⊆ ( 0 ... 𝑀 )
14 ssfi ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ⊆ ( 0 ... 𝑀 ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ∈ Fin )
15 11 13 14 mp2an { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ∈ Fin
16 15 a1i ( ( 𝜑𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ∈ Fin )
17 0zd ( 𝜑 → 0 ∈ ℤ )
18 2 nnzd ( 𝜑𝑀 ∈ ℤ )
19 2 nngt0d ( 𝜑 → 0 < 𝑀 )
20 fzolb ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) )
21 17 18 19 20 syl3anbrc ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) )
22 21 adantr ( ( 𝜑𝑥 ∈ ℝ ) → 0 ∈ ( 0 ..^ 𝑀 ) )
23 1 fourierdlem2 ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
24 2 23 syl ( 𝜑 → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
25 3 24 mpbid ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
26 25 simprd ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
27 26 simplld ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 )
28 1 2 3 fourierdlem11 ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) )
29 28 simp1d ( 𝜑𝐴 ∈ ℝ )
30 27 29 eqeltrd ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ )
31 30 27 eqled ( 𝜑 → ( 𝑄 ‘ 0 ) ≤ 𝐴 )
32 31 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝐸𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ 𝐴 )
33 iftrue ( ( 𝐸𝑥 ) = 𝐵 → if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) = 𝐴 )
34 33 eqcomd ( ( 𝐸𝑥 ) = 𝐵𝐴 = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
35 34 adantl ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝐸𝑥 ) = 𝐵 ) → 𝐴 = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
36 32 35 breqtrd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝐸𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
37 30 adantr ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ∈ ℝ )
38 29 adantr ( ( 𝜑𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ )
39 38 rexrd ( ( 𝜑𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ* )
40 28 simp2d ( 𝜑𝐵 ∈ ℝ )
41 40 adantr ( ( 𝜑𝑥 ∈ ℝ ) → 𝐵 ∈ ℝ )
42 iocssre ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ )
43 39 41 42 syl2anc ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ )
44 28 simp3d ( 𝜑𝐴 < 𝐵 )
45 29 40 44 4 5 fourierdlem4 ( 𝜑𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) )
46 45 ffvelrnda ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐸𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) )
47 43 46 sseldd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐸𝑥 ) ∈ ℝ )
48 27 adantr ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) = 𝐴 )
49 elioc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( ( 𝐸𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸𝑥 ) ∧ ( 𝐸𝑥 ) ≤ 𝐵 ) ) )
50 39 41 49 syl2anc ( ( 𝜑𝑥 ∈ ℝ ) → ( ( 𝐸𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸𝑥 ) ∧ ( 𝐸𝑥 ) ≤ 𝐵 ) ) )
51 46 50 mpbid ( ( 𝜑𝑥 ∈ ℝ ) → ( ( 𝐸𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸𝑥 ) ∧ ( 𝐸𝑥 ) ≤ 𝐵 ) )
52 51 simp2d ( ( 𝜑𝑥 ∈ ℝ ) → 𝐴 < ( 𝐸𝑥 ) )
53 48 52 eqbrtrd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) < ( 𝐸𝑥 ) )
54 37 47 53 ltled ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐸𝑥 ) )
55 54 adantr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐸𝑥 ) )
56 iffalse ( ¬ ( 𝐸𝑥 ) = 𝐵 → if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) = ( 𝐸𝑥 ) )
57 56 eqcomd ( ¬ ( 𝐸𝑥 ) = 𝐵 → ( 𝐸𝑥 ) = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
58 57 adantl ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸𝑥 ) = 𝐵 ) → ( 𝐸𝑥 ) = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
59 55 58 breqtrd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
60 36 59 pm2.61dan ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
61 6 a1i ( ( 𝜑𝑥 ∈ ℝ ) → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) )
62 eqeq1 ( 𝑦 = ( 𝐸𝑥 ) → ( 𝑦 = 𝐵 ↔ ( 𝐸𝑥 ) = 𝐵 ) )
63 id ( 𝑦 = ( 𝐸𝑥 ) → 𝑦 = ( 𝐸𝑥 ) )
64 62 63 ifbieq2d ( 𝑦 = ( 𝐸𝑥 ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
65 64 adantl ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑦 = ( 𝐸𝑥 ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
66 38 47 ifcld ( ( 𝜑𝑥 ∈ ℝ ) → if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) ∈ ℝ )
67 61 65 46 66 fvmptd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐿 ‘ ( 𝐸𝑥 ) ) = if ( ( 𝐸𝑥 ) = 𝐵 , 𝐴 , ( 𝐸𝑥 ) ) )
68 60 67 breqtrrd ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) )
69 fveq2 ( 𝑖 = 0 → ( 𝑄𝑖 ) = ( 𝑄 ‘ 0 ) )
70 69 breq1d ( 𝑖 = 0 → ( ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) ↔ ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) ) )
71 70 elrab ( 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ↔ ( 0 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) ) )
72 22 68 71 sylanbrc ( ( 𝜑𝑥 ∈ ℝ ) → 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } )
73 72 ne0d ( ( 𝜑𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ≠ ∅ )
74 fzssz ( 0 ... 𝑀 ) ⊆ ℤ
75 12 74 sstri ( 0 ..^ 𝑀 ) ⊆ ℤ
76 zssre ℤ ⊆ ℝ
77 75 76 sstri ( 0 ..^ 𝑀 ) ⊆ ℝ
78 8 77 sstri { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ⊆ ℝ
79 78 a1i ( ( 𝜑𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ⊆ ℝ )
80 fisupcl ( ( < Or ℝ ∧ ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ∈ Fin ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ≠ ∅ ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ⊆ ℝ ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } )
81 10 16 73 79 80 syl13anc ( ( 𝜑𝑥 ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } )
82 8 81 sseldi ( ( 𝜑𝑥 ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) )
83 82 7 fmptd ( 𝜑𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) )
84 81 ex ( 𝜑 → ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ) )
85 83 84 jca ( 𝜑 → ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸𝑥 ) ) } ) ) )