| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem37.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem37.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
fourierdlem37.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 4 |
|
fourierdlem37.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 5 |
|
fourierdlem37.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 6 |
|
fourierdlem37.l |
⊢ 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
| 7 |
|
fourierdlem37.i |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
| 8 |
|
ssrab2 |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ⊆ ( 0 ..^ 𝑀 ) |
| 9 |
|
ltso |
⊢ < Or ℝ |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → < Or ℝ ) |
| 11 |
|
fzfi |
⊢ ( 0 ... 𝑀 ) ∈ Fin |
| 12 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
| 13 |
8 12
|
sstri |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ⊆ ( 0 ... 𝑀 ) |
| 14 |
|
ssfi |
⊢ ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ⊆ ( 0 ... 𝑀 ) ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ∈ Fin ) |
| 15 |
11 13 14
|
mp2an |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ∈ Fin |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ∈ Fin ) |
| 17 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 18 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 19 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 20 |
|
fzolb |
⊢ ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
| 21 |
17 18 19 20
|
syl3anbrc |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ( 0 ..^ 𝑀 ) ) |
| 23 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 24 |
2 23
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 25 |
3 24
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 26 |
25
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 27 |
26
|
simplld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 28 |
1 2 3
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
| 29 |
28
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 30 |
27 29
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 31 |
30 27
|
eqled |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
| 33 |
|
iftrue |
⊢ ( ( 𝐸 ‘ 𝑥 ) = 𝐵 → if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) = 𝐴 ) |
| 34 |
33
|
eqcomd |
⊢ ( ( 𝐸 ‘ 𝑥 ) = 𝐵 → 𝐴 = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → 𝐴 = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 36 |
32 35
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 37 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 38 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 39 |
38
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
| 40 |
28
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 42 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 43 |
39 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 44 |
28
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 45 |
29 40 44 4 5
|
fourierdlem4 |
⊢ ( 𝜑 → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
| 46 |
45
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
| 47 |
43 46
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐸 ‘ 𝑥 ) ∈ ℝ ) |
| 48 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 49 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ 𝑥 ) ∧ ( 𝐸 ‘ 𝑥 ) ≤ 𝐵 ) ) ) |
| 50 |
39 41 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐸 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ 𝑥 ) ∧ ( 𝐸 ‘ 𝑥 ) ≤ 𝐵 ) ) ) |
| 51 |
46 50
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐸 ‘ 𝑥 ) ∈ ℝ ∧ 𝐴 < ( 𝐸 ‘ 𝑥 ) ∧ ( 𝐸 ‘ 𝑥 ) ≤ 𝐵 ) ) |
| 52 |
51
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 < ( 𝐸 ‘ 𝑥 ) ) |
| 53 |
48 52
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) < ( 𝐸 ‘ 𝑥 ) ) |
| 54 |
37 47 53
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐸 ‘ 𝑥 ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐸 ‘ 𝑥 ) ) |
| 56 |
|
iffalse |
⊢ ( ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 → if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) = ( 𝐸 ‘ 𝑥 ) ) |
| 57 |
56
|
eqcomd |
⊢ ( ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 → ( 𝐸 ‘ 𝑥 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 58 |
57
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝐸 ‘ 𝑥 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 59 |
55 58
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 60 |
36 59
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 61 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐿 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) ) |
| 62 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑥 ) → ( 𝑦 = 𝐵 ↔ ( 𝐸 ‘ 𝑥 ) = 𝐵 ) ) |
| 63 |
|
id |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑥 ) → 𝑦 = ( 𝐸 ‘ 𝑥 ) ) |
| 64 |
62 63
|
ifbieq2d |
⊢ ( 𝑦 = ( 𝐸 ‘ 𝑥 ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 = ( 𝐸 ‘ 𝑥 ) ) → if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 66 |
38 47
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ∈ ℝ ) |
| 67 |
61 65 46 66
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) = if ( ( 𝐸 ‘ 𝑥 ) = 𝐵 , 𝐴 , ( 𝐸 ‘ 𝑥 ) ) ) |
| 68 |
60 67
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
| 70 |
69
|
breq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
| 71 |
70
|
elrab |
⊢ ( 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ↔ ( 0 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝑄 ‘ 0 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
| 72 |
22 68 71
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) |
| 73 |
72
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ≠ ∅ ) |
| 74 |
|
fzssz |
⊢ ( 0 ... 𝑀 ) ⊆ ℤ |
| 75 |
12 74
|
sstri |
⊢ ( 0 ..^ 𝑀 ) ⊆ ℤ |
| 76 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 77 |
75 76
|
sstri |
⊢ ( 0 ..^ 𝑀 ) ⊆ ℝ |
| 78 |
8 77
|
sstri |
⊢ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ⊆ ℝ |
| 79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ⊆ ℝ ) |
| 80 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ∈ Fin ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ≠ ∅ ∧ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ⊆ ℝ ) ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) |
| 81 |
10 16 73 79 80
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) |
| 82 |
8 81
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ ( 0 ..^ 𝑀 ) ) |
| 83 |
82 7
|
fmptd |
⊢ ( 𝜑 → 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ) |
| 84 |
81
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ) |
| 85 |
83 84
|
jca |
⊢ ( 𝜑 → ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐿 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ) ) |