| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem36.a |
|- ( ph -> A e. Fin ) |
| 2 |
|
fourierdlem36.assr |
|- ( ph -> A C_ RR ) |
| 3 |
|
fourierdlem36.f |
|- F = ( iota f f Isom < , < ( ( 0 ... N ) , A ) ) |
| 4 |
|
fourierdlem36.n |
|- N = ( ( # ` A ) - 1 ) |
| 5 |
|
ltso |
|- < Or RR |
| 6 |
|
soss |
|- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
| 7 |
2 5 6
|
mpisyl |
|- ( ph -> < Or A ) |
| 8 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 9 |
|
eqid |
|- ( ( # ` A ) + ( 0 - 1 ) ) = ( ( # ` A ) + ( 0 - 1 ) ) |
| 10 |
1 7 8 9
|
fzisoeu |
|- ( ph -> E! f f Isom < , < ( ( 0 ... ( ( # ` A ) + ( 0 - 1 ) ) ) , A ) ) |
| 11 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
| 13 |
12
|
nn0cnd |
|- ( ph -> ( # ` A ) e. CC ) |
| 14 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 15 |
13 14
|
negsubd |
|- ( ph -> ( ( # ` A ) + -u 1 ) = ( ( # ` A ) - 1 ) ) |
| 16 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 17 |
16
|
eqcomi |
|- ( 0 - 1 ) = -u 1 |
| 18 |
17
|
oveq2i |
|- ( ( # ` A ) + ( 0 - 1 ) ) = ( ( # ` A ) + -u 1 ) |
| 19 |
15 18 4
|
3eqtr4g |
|- ( ph -> ( ( # ` A ) + ( 0 - 1 ) ) = N ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( 0 ... ( ( # ` A ) + ( 0 - 1 ) ) ) = ( 0 ... N ) ) |
| 21 |
|
isoeq4 |
|- ( ( 0 ... ( ( # ` A ) + ( 0 - 1 ) ) ) = ( 0 ... N ) -> ( f Isom < , < ( ( 0 ... ( ( # ` A ) + ( 0 - 1 ) ) ) , A ) <-> f Isom < , < ( ( 0 ... N ) , A ) ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( f Isom < , < ( ( 0 ... ( ( # ` A ) + ( 0 - 1 ) ) ) , A ) <-> f Isom < , < ( ( 0 ... N ) , A ) ) ) |
| 23 |
22
|
eubidv |
|- ( ph -> ( E! f f Isom < , < ( ( 0 ... ( ( # ` A ) + ( 0 - 1 ) ) ) , A ) <-> E! f f Isom < , < ( ( 0 ... N ) , A ) ) ) |
| 24 |
10 23
|
mpbid |
|- ( ph -> E! f f Isom < , < ( ( 0 ... N ) , A ) ) |
| 25 |
|
iotacl |
|- ( E! f f Isom < , < ( ( 0 ... N ) , A ) -> ( iota f f Isom < , < ( ( 0 ... N ) , A ) ) e. { f | f Isom < , < ( ( 0 ... N ) , A ) } ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( iota f f Isom < , < ( ( 0 ... N ) , A ) ) e. { f | f Isom < , < ( ( 0 ... N ) , A ) } ) |
| 27 |
3 26
|
eqeltrid |
|- ( ph -> F e. { f | f Isom < , < ( ( 0 ... N ) , A ) } ) |
| 28 |
|
iotaex |
|- ( iota f f Isom < , < ( ( 0 ... N ) , A ) ) e. _V |
| 29 |
3 28
|
eqeltri |
|- F e. _V |
| 30 |
|
isoeq1 |
|- ( f = F -> ( f Isom < , < ( ( 0 ... N ) , A ) <-> F Isom < , < ( ( 0 ... N ) , A ) ) ) |
| 31 |
29 30
|
elab |
|- ( F e. { f | f Isom < , < ( ( 0 ... N ) , A ) } <-> F Isom < , < ( ( 0 ... N ) , A ) ) |
| 32 |
27 31
|
sylib |
|- ( ph -> F Isom < , < ( ( 0 ... N ) , A ) ) |