| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem34.p |
|
| 2 |
|
fourierdlem34.m |
|
| 3 |
|
fourierdlem34.q |
|
| 4 |
1
|
fourierdlem2 |
|
| 5 |
2 4
|
syl |
|
| 6 |
3 5
|
mpbid |
|
| 7 |
6
|
simpld |
|
| 8 |
|
elmapi |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
simplr |
|
| 11 |
9
|
ffvelcdmda |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
9
|
ffvelcdmda |
|
| 14 |
13
|
ad4ant14 |
|
| 15 |
14
|
adantllr |
|
| 16 |
|
eleq1w |
|
| 17 |
16
|
anbi2d |
|
| 18 |
|
fveq2 |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
fveq2d |
|
| 21 |
18 20
|
breq12d |
|
| 22 |
17 21
|
imbi12d |
|
| 23 |
6
|
simprrd |
|
| 24 |
23
|
r19.21bi |
|
| 25 |
22 24
|
chvarvv |
|
| 26 |
25
|
ad4ant14 |
|
| 27 |
26
|
adantllr |
|
| 28 |
|
simpllr |
|
| 29 |
|
simplr |
|
| 30 |
|
simpr |
|
| 31 |
15 27 28 29 30
|
monoords |
|
| 32 |
12 31
|
ltned |
|
| 33 |
32
|
neneqd |
|
| 34 |
33
|
adantlr |
|
| 35 |
|
simpll |
|
| 36 |
|
elfzelz |
|
| 37 |
36
|
zred |
|
| 38 |
37
|
ad3antlr |
|
| 39 |
|
elfzelz |
|
| 40 |
39
|
zred |
|
| 41 |
40
|
ad4antlr |
|
| 42 |
|
neqne |
|
| 43 |
42
|
necomd |
|
| 44 |
43
|
ad2antlr |
|
| 45 |
|
simpr |
|
| 46 |
38 41 44 45
|
lttri5d |
|
| 47 |
9
|
ffvelcdmda |
|
| 48 |
47
|
adantr |
|
| 49 |
48
|
adantllr |
|
| 50 |
|
simp-4l |
|
| 51 |
50 13
|
sylancom |
|
| 52 |
|
simp-4l |
|
| 53 |
52 25
|
sylancom |
|
| 54 |
|
simplr |
|
| 55 |
|
simpllr |
|
| 56 |
|
simpr |
|
| 57 |
51 53 54 55 56
|
monoords |
|
| 58 |
49 57
|
gtned |
|
| 59 |
58
|
neneqd |
|
| 60 |
35 46 59
|
syl2anc |
|
| 61 |
34 60
|
pm2.61dan |
|
| 62 |
61
|
adantlr |
|
| 63 |
10 62
|
condan |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
ralrimiva |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
|
dff13 |
|
| 68 |
9 66 67
|
sylanbrc |
|