| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem33.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem33.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem33.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
fourierdlem33.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 5 |
|
fourierdlem33.5 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 6 |
|
fourierdlem33.6 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 7 |
|
fourierdlem33.7 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 8 |
|
fourierdlem33.8 |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 9 |
|
fourierdlem33.ss |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 10 |
|
fourierdlem33.y |
⊢ 𝑌 = if ( 𝐷 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐷 ) ) |
| 11 |
|
fourierdlem33.10 |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 13 |
|
iftrue |
⊢ ( 𝐷 = 𝐵 → if ( 𝐷 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐷 ) ) = 𝐿 ) |
| 14 |
10 13
|
eqtr2id |
⊢ ( 𝐷 = 𝐵 → 𝐿 = 𝑌 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐿 = 𝑌 ) |
| 16 |
|
oveq2 |
⊢ ( 𝐷 = 𝐵 → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐵 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐵 ) ) |
| 18 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 22 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 24 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 25 |
7
|
leidd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐷 ) |
| 26 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 27 |
|
elioc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ ) → ( 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ∧ 𝐷 ≤ 𝐷 ) ) ) |
| 28 |
26 7 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ↔ ( 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ∧ 𝐷 ≤ 𝐷 ) ) ) |
| 29 |
7 8 25 28
|
mpbir3and |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐷 ∈ ( 𝐶 (,] 𝐷 ) ) |
| 31 |
|
eqcom |
⊢ ( 𝐷 = 𝐵 ↔ 𝐵 = 𝐷 ) |
| 32 |
31
|
biimpi |
⊢ ( 𝐷 = 𝐵 → 𝐵 = 𝐷 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐵 = 𝐷 ) |
| 34 |
24
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 35 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 36 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 37 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 38 |
35 36 3 37
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 39 |
|
ovex |
⊢ ( 𝐴 (,] 𝐵 ) ∈ V |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ∈ V ) |
| 41 |
38 40
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ) |
| 42 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ) |
| 43 |
34 41 42
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ) |
| 44 |
11 43
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐽 ∈ Top ) |
| 46 |
|
oveq2 |
⊢ ( 𝐷 = 𝐵 → ( 𝐶 (,] 𝐷 ) = ( 𝐶 (,] 𝐵 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) = ( 𝐶 (,] 𝐵 ) ) |
| 48 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 49 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → +∞ ∈ ℝ* ) |
| 51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) |
| 52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 53 |
|
elioc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 54 |
48 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 55 |
51 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 56 |
55
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 57 |
55
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 < 𝑥 ) |
| 58 |
56
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 < +∞ ) |
| 59 |
48 50 56 57 58
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
| 60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 61 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 62 |
1 2 6 7 8 9
|
fourierdlem10 |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |
| 63 |
62
|
simpld |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 65 |
60 61 56 64 57
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 < 𝑥 ) |
| 66 |
55
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 67 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 68 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 69 |
67 52 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 70 |
56 65 66 69
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 71 |
59 70
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
| 72 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
| 73 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐶 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 74 |
72 73
|
syl |
⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
| 76 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
| 77 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → +∞ ∈ ℝ* ) |
| 78 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
| 79 |
|
ioogtlb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 𝐶 (,) +∞ ) ) → 𝐶 < 𝑥 ) |
| 80 |
76 77 78 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐶 < 𝑥 ) |
| 81 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 83 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
| 84 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 85 |
83 84 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 86 |
82 85
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 87 |
86
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ≤ 𝐵 ) |
| 88 |
76 84 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 89 |
75 80 87 88
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) |
| 90 |
71 89
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) ) |
| 91 |
90
|
eqrdv |
⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) = ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
| 92 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 93 |
92
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 94 |
|
iooretop |
⊢ ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
| 95 |
94
|
a1i |
⊢ ( 𝜑 → ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
| 96 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,] 𝐵 ) ∈ V ∧ ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 97 |
93 40 95 96
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 98 |
91 97
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 100 |
47 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 101 |
11
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 102 |
38
|
oveq2d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 103 |
34
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 104 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 105 |
35 2 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 106 |
|
reex |
⊢ ℝ ∈ V |
| 107 |
106
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 108 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,] 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 109 |
103 105 107 108
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 110 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 111 |
110
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
| 112 |
111
|
oveq1i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) |
| 113 |
109 112
|
eqtr3di |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 114 |
101 102 113
|
3eqtrrd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) = 𝐽 ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,] 𝐵 ) ) = 𝐽 ) |
| 116 |
100 115
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) ∈ 𝐽 ) |
| 117 |
|
isopn3i |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐶 (,] 𝐷 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) = ( 𝐶 (,] 𝐷 ) ) |
| 118 |
45 116 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) = ( 𝐶 (,] 𝐷 ) ) |
| 119 |
30 33 118
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) ) |
| 120 |
|
sneq |
⊢ ( 𝐷 = 𝐵 → { 𝐷 } = { 𝐵 } ) |
| 121 |
120
|
eqcomd |
⊢ ( 𝐷 = 𝐵 → { 𝐵 } = { 𝐷 } ) |
| 122 |
121
|
uneq2d |
⊢ ( 𝐷 = 𝐵 → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) = ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) ) |
| 123 |
122
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) = ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) ) |
| 124 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 125 |
|
ioounsn |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) = ( 𝐶 (,] 𝐷 ) ) |
| 126 |
26 124 8 125
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) = ( 𝐶 (,] 𝐷 ) ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐷 } ) = ( 𝐶 (,] 𝐷 ) ) |
| 128 |
123 127
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐶 (,] 𝐷 ) = ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) ) |
| 129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 (,] 𝐷 ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) ) ) |
| 130 |
119 129
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐵 } ) ) ) |
| 131 |
20 21 23 24 11 130
|
limcres |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
| 132 |
17 131
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |
| 133 |
12 15 132
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝐷 = 𝐵 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |
| 134 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) |
| 135 |
|
iffalse |
⊢ ( ¬ 𝐷 = 𝐵 → if ( 𝐷 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐷 ) ) = ( 𝐹 ‘ 𝐷 ) ) |
| 136 |
10 135
|
eqtrid |
⊢ ( ¬ 𝐷 = 𝐵 → 𝑌 = ( 𝐹 ‘ 𝐷 ) ) |
| 137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝑌 = ( 𝐹 ‘ 𝐷 ) ) |
| 138 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 139 |
138
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 140 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 141 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 142 |
141
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 143 |
34 142
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 144 |
143
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 145 |
24 140 144
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 146 |
22 139 145
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 147 |
4 146
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 148 |
24
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 149 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 150 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 151 |
148 149 150
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 152 |
148
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 153 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 154 |
151 152 153
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 155 |
147 154
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 156 |
155
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 158 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 159 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 160 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 ∈ ℝ ) |
| 161 |
1 6 7 63 8
|
lelttrd |
⊢ ( 𝜑 → 𝐴 < 𝐷 ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐴 < 𝐷 ) |
| 163 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 164 |
62
|
simprd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 ≤ 𝐵 ) |
| 166 |
|
neqne |
⊢ ( ¬ 𝐷 = 𝐵 → 𝐷 ≠ 𝐵 ) |
| 167 |
166
|
necomd |
⊢ ( ¬ 𝐷 = 𝐵 → 𝐵 ≠ 𝐷 ) |
| 168 |
167
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐵 ≠ 𝐷 ) |
| 169 |
160 163 165 168
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 < 𝐵 ) |
| 170 |
158 159 160 162 169
|
eliood |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 171 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) |
| 172 |
171
|
eleq2d |
⊢ ( 𝑥 = 𝐷 → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) ) |
| 173 |
172
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) |
| 174 |
157 170 173
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ) |
| 175 |
24 140
|
cnplimc |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) ) ) |
| 176 |
22 170 175
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) ) ) |
| 177 |
174 176
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) ) |
| 178 |
177
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 limℂ 𝐷 ) ) |
| 179 |
137 178
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝑌 ∈ ( 𝐹 limℂ 𝐷 ) ) |
| 180 |
134 179
|
sselid |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 = 𝐵 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |
| 181 |
133 180
|
pm2.61dan |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐷 ) ) |