| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem10.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem10.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem10.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
fourierdlem10.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 5 |
|
fourierdlem10.5 |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 6 |
|
fourierdlem10.6 |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 8 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 ∈ ℝ* ) |
| 10 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐷 ∈ ℝ* ) |
| 12 |
3 1
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
| 13 |
12
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐴 ) / 2 ) ∈ ℝ ) |
| 14 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 15 |
14
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 16 |
13 15
|
ifcld |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 < 𝐴 ) |
| 19 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 ∈ ℝ ) |
| 20 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 21 |
|
avglt1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 < 𝐴 ↔ 𝐶 < ( ( 𝐶 + 𝐴 ) / 2 ) ) ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 < 𝐴 ↔ 𝐶 < ( ( 𝐶 + 𝐴 ) / 2 ) ) ) |
| 23 |
18 22
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 24 |
|
iftrue |
⊢ ( 𝐴 ≤ 𝐷 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 26 |
23 25
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ 𝐴 ≤ 𝐷 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < 𝐷 ) |
| 28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 ∈ ℝ ) |
| 29 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
| 30 |
|
avglt1 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 < 𝐷 ↔ 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 31 |
28 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( 𝐶 < 𝐷 ↔ 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 32 |
27 31
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 33 |
|
iffalse |
⊢ ( ¬ 𝐴 ≤ 𝐷 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 34 |
33
|
eqcomd |
⊢ ( ¬ 𝐴 ≤ 𝐷 → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 36 |
32 35
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 37 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐶 < 𝐴 ) ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 38 |
26 37
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 39 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 40 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
| 41 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 42 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 2 ∈ ℝ+ ) |
| 44 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 45 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
| 46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐶 ∈ ℝ ) |
| 47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → 𝐴 ≤ 𝐷 ) |
| 48 |
44 45 46 47
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐷 ) ) |
| 49 |
40 41 43 48
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐴 ) / 2 ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 50 |
39 49
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 51 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 52 |
15
|
leidd |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 54 |
51 53
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 55 |
50 54
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 56 |
|
avglt2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 < 𝐷 ↔ ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) ) |
| 57 |
3 4 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ↔ ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) ) |
| 58 |
5 57
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) |
| 59 |
16 15 4 55 58
|
lelttrd |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
| 61 |
9 11 17 38 60
|
eliood |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ) |
| 62 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 63 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( ( 𝐶 + 𝐴 ) / 2 ) ∈ ℝ ) |
| 64 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 65 |
64 39
|
eqled |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 66 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 67 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐴 ) / 2 ) ∈ ℝ ) |
| 68 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ¬ 𝐴 ≤ 𝐷 ) |
| 69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
| 70 |
29 69
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( 𝐷 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐷 ) ) |
| 71 |
68 70
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → 𝐷 < 𝐴 ) |
| 72 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 73 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
| 74 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 2 ∈ ℝ+ ) |
| 75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐷 ∈ ℝ ) |
| 76 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 77 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐶 ∈ ℝ ) |
| 78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → 𝐷 < 𝐴 ) |
| 79 |
75 76 77 78
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( 𝐶 + 𝐷 ) < ( 𝐶 + 𝐴 ) ) |
| 80 |
72 73 74 79
|
ltdiv1dd |
⊢ ( ( 𝜑 ∧ 𝐷 < 𝐴 ) → ( ( 𝐶 + 𝐷 ) / 2 ) < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 81 |
71 80
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → ( ( 𝐶 + 𝐷 ) / 2 ) < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 82 |
51 81
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 83 |
66 67 82
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≤ 𝐷 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 84 |
65 83
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ≤ ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 86 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 < 𝐴 ) |
| 87 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐶 ∈ ℝ ) |
| 88 |
|
avglt2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐶 < 𝐴 ↔ ( ( 𝐶 + 𝐴 ) / 2 ) < 𝐴 ) ) |
| 89 |
87 62 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( 𝐶 < 𝐴 ↔ ( ( 𝐶 + 𝐴 ) / 2 ) < 𝐴 ) ) |
| 90 |
86 89
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( ( 𝐶 + 𝐴 ) / 2 ) < 𝐴 ) |
| 91 |
17 63 62 85 90
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐴 ) |
| 92 |
17 62 91
|
ltnsymd |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 93 |
92
|
intn3an2d |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) |
| 94 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 96 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 98 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
| 99 |
95 97 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
| 100 |
93 99
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 101 |
|
nelss |
⊢ ( ( if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ∧ ¬ if ( 𝐴 ≤ 𝐷 , ( ( 𝐶 + 𝐴 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 102 |
61 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝐴 ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 103 |
7 102
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐶 < 𝐴 ) |
| 104 |
1 3 103
|
nltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 105 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 106 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐶 ∈ ℝ* ) |
| 107 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐷 ∈ ℝ* ) |
| 108 |
2 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ∈ ℝ ) |
| 109 |
108
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 110 |
109 15
|
ifcld |
⊢ ( 𝜑 → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 112 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
| 113 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 114 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ) |
| 115 |
3 4 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ↔ 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 116 |
5 115
|
mpbid |
⊢ ( 𝜑 → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 118 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 119 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐵 + 𝐷 ) ∈ ℝ ) |
| 120 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 2 ∈ ℝ+ ) |
| 121 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 122 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐷 ∈ ℝ ) |
| 123 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 124 |
112 121 122 123
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 + 𝐷 ) ≤ ( 𝐵 + 𝐷 ) ) |
| 125 |
118 119 120 124
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 126 |
|
iftrue |
⊢ ( 𝐶 ≤ 𝐵 → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 128 |
125 127
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 129 |
112 113 114 117 128
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 130 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐶 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 131 |
|
iffalse |
⊢ ( ¬ 𝐶 ≤ 𝐵 → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 132 |
131
|
eqcomd |
⊢ ( ¬ 𝐶 ≤ 𝐵 → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) = if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 134 |
130 133
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 135 |
129 134
|
pm2.61dan |
⊢ ( 𝜑 → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐶 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 137 |
126
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 138 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 < 𝐷 ) |
| 139 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ∈ ℝ ) |
| 140 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐷 ∈ ℝ ) |
| 141 |
|
avglt2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵 < 𝐷 ↔ ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) ) |
| 142 |
139 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( 𝐵 < 𝐷 ↔ ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) ) |
| 143 |
138 142
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) |
| 144 |
143
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐵 + 𝐷 ) / 2 ) < 𝐷 ) |
| 145 |
137 144
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
| 146 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) = ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 147 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) < 𝐷 ) |
| 148 |
146 147
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
| 149 |
148
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ ¬ 𝐶 ≤ 𝐵 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
| 150 |
145 149
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐷 ) |
| 151 |
106 107 111 136 150
|
eliood |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ) |
| 152 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( ( 𝐵 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 153 |
|
avglt1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵 < 𝐷 ↔ 𝐵 < ( ( 𝐵 + 𝐷 ) / 2 ) ) ) |
| 154 |
139 140 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( 𝐵 < 𝐷 ↔ 𝐵 < ( ( 𝐵 + 𝐷 ) / 2 ) ) ) |
| 155 |
138 154
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 < ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 156 |
139 152 155
|
ltled |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ≤ ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 157 |
156
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ ( ( 𝐵 + 𝐷 ) / 2 ) ) |
| 158 |
157 137
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 159 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 160 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 161 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
| 162 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ¬ 𝐶 ≤ 𝐵 ) |
| 163 |
159 161
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
| 164 |
162 163
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 < 𝐶 ) |
| 165 |
159 161 160 164 130
|
lttrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 < ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 166 |
159 160 165
|
ltled |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ ( ( 𝐶 + 𝐷 ) / 2 ) ) |
| 167 |
166 133
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 < 𝐷 ) ∧ ¬ 𝐶 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 169 |
158 168
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ) |
| 170 |
139 111 169
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) |
| 171 |
170
|
intn3an3d |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) |
| 172 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐴 ∈ ℝ* ) |
| 173 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → 𝐵 ∈ ℝ* ) |
| 174 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
| 175 |
172 173 174
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ↔ ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ℝ ∧ 𝐴 < if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∧ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) < 𝐵 ) ) ) |
| 176 |
171 175
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 177 |
|
nelss |
⊢ ( ( if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐶 (,) 𝐷 ) ∧ ¬ if ( 𝐶 ≤ 𝐵 , ( ( 𝐵 + 𝐷 ) / 2 ) , ( ( 𝐶 + 𝐷 ) / 2 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 178 |
151 176 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐷 ) → ¬ ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 179 |
105 178
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐷 ) |
| 180 |
4 2 179
|
nltled |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
| 181 |
104 180
|
jca |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |