| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem33.1 |
|
| 2 |
|
fourierdlem33.2 |
|
| 3 |
|
fourierdlem33.3 |
|
| 4 |
|
fourierdlem33.4 |
|
| 5 |
|
fourierdlem33.5 |
|
| 6 |
|
fourierdlem33.6 |
|
| 7 |
|
fourierdlem33.7 |
|
| 8 |
|
fourierdlem33.8 |
|
| 9 |
|
fourierdlem33.ss |
|
| 10 |
|
fourierdlem33.y |
|
| 11 |
|
fourierdlem33.10 |
|
| 12 |
5
|
adantr |
|
| 13 |
|
iftrue |
|
| 14 |
10 13
|
eqtr2id |
|
| 15 |
14
|
adantl |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
cncff |
|
| 19 |
4 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
9
|
adantr |
|
| 22 |
|
ioosscn |
|
| 23 |
22
|
a1i |
|
| 24 |
|
eqid |
|
| 25 |
7
|
leidd |
|
| 26 |
6
|
rexrd |
|
| 27 |
|
elioc2 |
|
| 28 |
26 7 27
|
syl2anc |
|
| 29 |
7 8 25 28
|
mpbir3and |
|
| 30 |
29
|
adantr |
|
| 31 |
|
eqcom |
|
| 32 |
31
|
biimpi |
|
| 33 |
32
|
adantl |
|
| 34 |
24
|
cnfldtop |
|
| 35 |
1
|
rexrd |
|
| 36 |
2
|
rexrd |
|
| 37 |
|
ioounsn |
|
| 38 |
35 36 3 37
|
syl3anc |
|
| 39 |
|
ovex |
|
| 40 |
39
|
a1i |
|
| 41 |
38 40
|
eqeltrd |
|
| 42 |
|
resttop |
|
| 43 |
34 41 42
|
sylancr |
|
| 44 |
11 43
|
eqeltrid |
|
| 45 |
44
|
adantr |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
adantl |
|
| 48 |
26
|
adantr |
|
| 49 |
|
pnfxr |
|
| 50 |
49
|
a1i |
|
| 51 |
|
simpr |
|
| 52 |
2
|
adantr |
|
| 53 |
|
elioc2 |
|
| 54 |
48 52 53
|
syl2anc |
|
| 55 |
51 54
|
mpbid |
|
| 56 |
55
|
simp1d |
|
| 57 |
55
|
simp2d |
|
| 58 |
56
|
ltpnfd |
|
| 59 |
48 50 56 57 58
|
eliood |
|
| 60 |
1
|
adantr |
|
| 61 |
6
|
adantr |
|
| 62 |
1 2 6 7 8 9
|
fourierdlem10 |
|
| 63 |
62
|
simpld |
|
| 64 |
63
|
adantr |
|
| 65 |
60 61 56 64 57
|
lelttrd |
|
| 66 |
55
|
simp3d |
|
| 67 |
35
|
adantr |
|
| 68 |
|
elioc2 |
|
| 69 |
67 52 68
|
syl2anc |
|
| 70 |
56 65 66 69
|
mpbir3and |
|
| 71 |
59 70
|
elind |
|
| 72 |
|
elinel1 |
|
| 73 |
|
elioore |
|
| 74 |
72 73
|
syl |
|
| 75 |
74
|
adantl |
|
| 76 |
26
|
adantr |
|
| 77 |
49
|
a1i |
|
| 78 |
72
|
adantl |
|
| 79 |
|
ioogtlb |
|
| 80 |
76 77 78 79
|
syl3anc |
|
| 81 |
|
elinel2 |
|
| 82 |
81
|
adantl |
|
| 83 |
35
|
adantr |
|
| 84 |
2
|
adantr |
|
| 85 |
83 84 68
|
syl2anc |
|
| 86 |
82 85
|
mpbid |
|
| 87 |
86
|
simp3d |
|
| 88 |
76 84 53
|
syl2anc |
|
| 89 |
75 80 87 88
|
mpbir3and |
|
| 90 |
71 89
|
impbida |
|
| 91 |
90
|
eqrdv |
|
| 92 |
|
retop |
|
| 93 |
92
|
a1i |
|
| 94 |
|
iooretop |
|
| 95 |
94
|
a1i |
|
| 96 |
|
elrestr |
|
| 97 |
93 40 95 96
|
syl3anc |
|
| 98 |
91 97
|
eqeltrd |
|
| 99 |
98
|
adantr |
|
| 100 |
47 99
|
eqeltrd |
|
| 101 |
11
|
a1i |
|
| 102 |
38
|
oveq2d |
|
| 103 |
34
|
a1i |
|
| 104 |
|
iocssre |
|
| 105 |
35 2 104
|
syl2anc |
|
| 106 |
|
reex |
|
| 107 |
106
|
a1i |
|
| 108 |
|
restabs |
|
| 109 |
103 105 107 108
|
syl3anc |
|
| 110 |
|
tgioo4 |
|
| 111 |
110
|
eqcomi |
|
| 112 |
111
|
oveq1i |
|
| 113 |
109 112
|
eqtr3di |
|
| 114 |
101 102 113
|
3eqtrrd |
|
| 115 |
114
|
adantr |
|
| 116 |
100 115
|
eleqtrd |
|
| 117 |
|
isopn3i |
|
| 118 |
45 116 117
|
syl2anc |
|
| 119 |
30 33 118
|
3eltr4d |
|
| 120 |
|
sneq |
|
| 121 |
120
|
eqcomd |
|
| 122 |
121
|
uneq2d |
|
| 123 |
122
|
adantl |
|
| 124 |
7
|
rexrd |
|
| 125 |
|
ioounsn |
|
| 126 |
26 124 8 125
|
syl3anc |
|
| 127 |
126
|
adantr |
|
| 128 |
123 127
|
eqtr2d |
|
| 129 |
128
|
fveq2d |
|
| 130 |
119 129
|
eleqtrd |
|
| 131 |
20 21 23 24 11 130
|
limcres |
|
| 132 |
17 131
|
eqtr2d |
|
| 133 |
12 15 132
|
3eltr3d |
|
| 134 |
|
limcresi |
|
| 135 |
|
iffalse |
|
| 136 |
10 135
|
eqtrid |
|
| 137 |
136
|
adantl |
|
| 138 |
|
ssid |
|
| 139 |
138
|
a1i |
|
| 140 |
|
eqid |
|
| 141 |
|
unicntop |
|
| 142 |
141
|
restid |
|
| 143 |
34 142
|
ax-mp |
|
| 144 |
143
|
eqcomi |
|
| 145 |
24 140 144
|
cncfcn |
|
| 146 |
22 139 145
|
sylancr |
|
| 147 |
4 146
|
eleqtrd |
|
| 148 |
24
|
cnfldtopon |
|
| 149 |
22
|
a1i |
|
| 150 |
|
resttopon |
|
| 151 |
148 149 150
|
sylancr |
|
| 152 |
148
|
a1i |
|
| 153 |
|
cncnp |
|
| 154 |
151 152 153
|
syl2anc |
|
| 155 |
147 154
|
mpbid |
|
| 156 |
155
|
simprd |
|
| 157 |
156
|
adantr |
|
| 158 |
35
|
adantr |
|
| 159 |
36
|
adantr |
|
| 160 |
7
|
adantr |
|
| 161 |
1 6 7 63 8
|
lelttrd |
|
| 162 |
161
|
adantr |
|
| 163 |
2
|
adantr |
|
| 164 |
62
|
simprd |
|
| 165 |
164
|
adantr |
|
| 166 |
|
neqne |
|
| 167 |
166
|
necomd |
|
| 168 |
167
|
adantl |
|
| 169 |
160 163 165 168
|
leneltd |
|
| 170 |
158 159 160 162 169
|
eliood |
|
| 171 |
|
fveq2 |
|
| 172 |
171
|
eleq2d |
|
| 173 |
172
|
rspccva |
|
| 174 |
157 170 173
|
syl2anc |
|
| 175 |
24 140
|
cnplimc |
|
| 176 |
22 170 175
|
sylancr |
|
| 177 |
174 176
|
mpbid |
|
| 178 |
177
|
simprd |
|
| 179 |
137 178
|
eqeltrd |
|
| 180 |
134 179
|
sselid |
|
| 181 |
133 180
|
pm2.61dan |
|