| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem50.xre |
|- ( ph -> X e. RR ) |
| 2 |
|
fourierdlem50.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 3 |
|
fourierdlem50.m |
|- ( ph -> M e. NN ) |
| 4 |
|
fourierdlem50.v |
|- ( ph -> V e. ( P ` M ) ) |
| 5 |
|
fourierdlem50.a |
|- ( ph -> A e. RR ) |
| 6 |
|
fourierdlem50.b |
|- ( ph -> B e. RR ) |
| 7 |
|
fourierdlem50.altb |
|- ( ph -> A < B ) |
| 8 |
|
fourierdlem50.ab |
|- ( ph -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
| 9 |
|
fourierdlem50.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
| 10 |
|
fourierdlem50.t |
|- T = ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) |
| 11 |
|
fourierdlem50.n |
|- N = ( ( # ` T ) - 1 ) |
| 12 |
|
fourierdlem50.s |
|- S = ( iota f f Isom < , < ( ( 0 ... N ) , T ) ) |
| 13 |
|
fourierdlem50.j |
|- ( ph -> J e. ( 0 ..^ N ) ) |
| 14 |
|
fourierdlem50.u |
|- U = ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 15 |
|
fourierdlem50.ch |
|- ( ch <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) ) |
| 16 |
5 6 7
|
ltled |
|- ( ph -> A <_ B ) |
| 17 |
2 3 4
|
fourierdlem15 |
|- ( ph -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
| 18 |
|
pire |
|- _pi e. RR |
| 19 |
18
|
renegcli |
|- -u _pi e. RR |
| 20 |
19
|
a1i |
|- ( ph -> -u _pi e. RR ) |
| 21 |
20 1
|
readdcld |
|- ( ph -> ( -u _pi + X ) e. RR ) |
| 22 |
18
|
a1i |
|- ( ph -> _pi e. RR ) |
| 23 |
22 1
|
readdcld |
|- ( ph -> ( _pi + X ) e. RR ) |
| 24 |
21 23
|
iccssred |
|- ( ph -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
| 25 |
17 24
|
fssd |
|- ( ph -> V : ( 0 ... M ) --> RR ) |
| 26 |
25
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) e. RR ) |
| 27 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) |
| 28 |
26 27
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) e. RR ) |
| 29 |
28 9
|
fmptd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 30 |
9
|
a1i |
|- ( ph -> Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) ) |
| 31 |
|
fveq2 |
|- ( i = 0 -> ( V ` i ) = ( V ` 0 ) ) |
| 32 |
31
|
oveq1d |
|- ( i = 0 -> ( ( V ` i ) - X ) = ( ( V ` 0 ) - X ) ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( V ` i ) - X ) = ( ( V ` 0 ) - X ) ) |
| 34 |
|
nnssnn0 |
|- NN C_ NN0 |
| 35 |
34
|
a1i |
|- ( ph -> NN C_ NN0 ) |
| 36 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 37 |
35 36
|
sseqtrdi |
|- ( ph -> NN C_ ( ZZ>= ` 0 ) ) |
| 38 |
37 3
|
sseldd |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 39 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 40 |
38 39
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 41 |
25 40
|
ffvelcdmd |
|- ( ph -> ( V ` 0 ) e. RR ) |
| 42 |
41 1
|
resubcld |
|- ( ph -> ( ( V ` 0 ) - X ) e. RR ) |
| 43 |
30 33 40 42
|
fvmptd |
|- ( ph -> ( Q ` 0 ) = ( ( V ` 0 ) - X ) ) |
| 44 |
2
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
| 45 |
3 44
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
| 46 |
4 45
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
| 47 |
46
|
simprd |
|- ( ph -> ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) |
| 48 |
47
|
simpld |
|- ( ph -> ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) ) |
| 49 |
48
|
simpld |
|- ( ph -> ( V ` 0 ) = ( -u _pi + X ) ) |
| 50 |
49
|
oveq1d |
|- ( ph -> ( ( V ` 0 ) - X ) = ( ( -u _pi + X ) - X ) ) |
| 51 |
20
|
recnd |
|- ( ph -> -u _pi e. CC ) |
| 52 |
1
|
recnd |
|- ( ph -> X e. CC ) |
| 53 |
51 52
|
pncand |
|- ( ph -> ( ( -u _pi + X ) - X ) = -u _pi ) |
| 54 |
43 50 53
|
3eqtrd |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
| 55 |
20
|
rexrd |
|- ( ph -> -u _pi e. RR* ) |
| 56 |
22
|
rexrd |
|- ( ph -> _pi e. RR* ) |
| 57 |
5
|
leidd |
|- ( ph -> A <_ A ) |
| 58 |
5 6 5 57 16
|
eliccd |
|- ( ph -> A e. ( A [,] B ) ) |
| 59 |
8 58
|
sseldd |
|- ( ph -> A e. ( -u _pi [,] _pi ) ) |
| 60 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ A e. ( -u _pi [,] _pi ) ) -> -u _pi <_ A ) |
| 61 |
55 56 59 60
|
syl3anc |
|- ( ph -> -u _pi <_ A ) |
| 62 |
54 61
|
eqbrtrd |
|- ( ph -> ( Q ` 0 ) <_ A ) |
| 63 |
6
|
leidd |
|- ( ph -> B <_ B ) |
| 64 |
5 6 6 16 63
|
eliccd |
|- ( ph -> B e. ( A [,] B ) ) |
| 65 |
8 64
|
sseldd |
|- ( ph -> B e. ( -u _pi [,] _pi ) ) |
| 66 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ B e. ( -u _pi [,] _pi ) ) -> B <_ _pi ) |
| 67 |
55 56 65 66
|
syl3anc |
|- ( ph -> B <_ _pi ) |
| 68 |
|
fveq2 |
|- ( i = M -> ( V ` i ) = ( V ` M ) ) |
| 69 |
68
|
oveq1d |
|- ( i = M -> ( ( V ` i ) - X ) = ( ( V ` M ) - X ) ) |
| 70 |
69
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( V ` i ) - X ) = ( ( V ` M ) - X ) ) |
| 71 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 72 |
38 71
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 73 |
25 72
|
ffvelcdmd |
|- ( ph -> ( V ` M ) e. RR ) |
| 74 |
73 1
|
resubcld |
|- ( ph -> ( ( V ` M ) - X ) e. RR ) |
| 75 |
30 70 72 74
|
fvmptd |
|- ( ph -> ( Q ` M ) = ( ( V ` M ) - X ) ) |
| 76 |
48
|
simprd |
|- ( ph -> ( V ` M ) = ( _pi + X ) ) |
| 77 |
76
|
oveq1d |
|- ( ph -> ( ( V ` M ) - X ) = ( ( _pi + X ) - X ) ) |
| 78 |
22
|
recnd |
|- ( ph -> _pi e. CC ) |
| 79 |
78 52
|
pncand |
|- ( ph -> ( ( _pi + X ) - X ) = _pi ) |
| 80 |
75 77 79
|
3eqtrrd |
|- ( ph -> _pi = ( Q ` M ) ) |
| 81 |
67 80
|
breqtrd |
|- ( ph -> B <_ ( Q ` M ) ) |
| 82 |
|
prfi |
|- { A , B } e. Fin |
| 83 |
82
|
a1i |
|- ( ph -> { A , B } e. Fin ) |
| 84 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
| 85 |
9
|
rnmptfi |
|- ( ( 0 ... M ) e. Fin -> ran Q e. Fin ) |
| 86 |
84 85
|
syl |
|- ( ph -> ran Q e. Fin ) |
| 87 |
|
infi |
|- ( ran Q e. Fin -> ( ran Q i^i ( A (,) B ) ) e. Fin ) |
| 88 |
86 87
|
syl |
|- ( ph -> ( ran Q i^i ( A (,) B ) ) e. Fin ) |
| 89 |
|
unfi |
|- ( ( { A , B } e. Fin /\ ( ran Q i^i ( A (,) B ) ) e. Fin ) -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) e. Fin ) |
| 90 |
83 88 89
|
syl2anc |
|- ( ph -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) e. Fin ) |
| 91 |
10 90
|
eqeltrid |
|- ( ph -> T e. Fin ) |
| 92 |
5 6
|
jca |
|- ( ph -> ( A e. RR /\ B e. RR ) ) |
| 93 |
|
prssg |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A e. RR /\ B e. RR ) <-> { A , B } C_ RR ) ) |
| 94 |
5 6 93
|
syl2anc |
|- ( ph -> ( ( A e. RR /\ B e. RR ) <-> { A , B } C_ RR ) ) |
| 95 |
92 94
|
mpbid |
|- ( ph -> { A , B } C_ RR ) |
| 96 |
|
inss2 |
|- ( ran Q i^i ( A (,) B ) ) C_ ( A (,) B ) |
| 97 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 98 |
96 97
|
sstri |
|- ( ran Q i^i ( A (,) B ) ) C_ RR |
| 99 |
98
|
a1i |
|- ( ph -> ( ran Q i^i ( A (,) B ) ) C_ RR ) |
| 100 |
95 99
|
unssd |
|- ( ph -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) C_ RR ) |
| 101 |
10 100
|
eqsstrid |
|- ( ph -> T C_ RR ) |
| 102 |
91 101 12 11
|
fourierdlem36 |
|- ( ph -> S Isom < , < ( ( 0 ... N ) , T ) ) |
| 103 |
|
eqid |
|- sup ( { x e. ( 0 ..^ M ) | ( Q ` x ) <_ ( S ` J ) } , RR , < ) = sup ( { x e. ( 0 ..^ M ) | ( Q ` x ) <_ ( S ` J ) } , RR , < ) |
| 104 |
3 5 6 16 29 62 81 13 10 102 103
|
fourierdlem20 |
|- ( ph -> E. i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 105 |
15
|
biimpi |
|- ( ch -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) ) |
| 106 |
|
simp-4l |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> ph ) |
| 107 |
105 106
|
syl |
|- ( ch -> ph ) |
| 108 |
|
simplr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> k e. ( 0 ..^ M ) ) |
| 109 |
105 108
|
syl |
|- ( ch -> k e. ( 0 ..^ M ) ) |
| 110 |
107 109
|
jca |
|- ( ch -> ( ph /\ k e. ( 0 ..^ M ) ) ) |
| 111 |
|
simp-4r |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 112 |
105 111
|
syl |
|- ( ch -> i e. ( 0 ..^ M ) ) |
| 113 |
|
elfzofz |
|- ( k e. ( 0 ..^ M ) -> k e. ( 0 ... M ) ) |
| 114 |
113
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> k e. ( 0 ... M ) ) |
| 115 |
105 114
|
syl |
|- ( ch -> k e. ( 0 ... M ) ) |
| 116 |
107 25
|
syl |
|- ( ch -> V : ( 0 ... M ) --> RR ) |
| 117 |
116 115
|
ffvelcdmd |
|- ( ch -> ( V ` k ) e. RR ) |
| 118 |
107 1
|
syl |
|- ( ch -> X e. RR ) |
| 119 |
117 118
|
resubcld |
|- ( ch -> ( ( V ` k ) - X ) e. RR ) |
| 120 |
|
fveq2 |
|- ( i = k -> ( V ` i ) = ( V ` k ) ) |
| 121 |
120
|
oveq1d |
|- ( i = k -> ( ( V ` i ) - X ) = ( ( V ` k ) - X ) ) |
| 122 |
121 9
|
fvmptg |
|- ( ( k e. ( 0 ... M ) /\ ( ( V ` k ) - X ) e. RR ) -> ( Q ` k ) = ( ( V ` k ) - X ) ) |
| 123 |
115 119 122
|
syl2anc |
|- ( ch -> ( Q ` k ) = ( ( V ` k ) - X ) ) |
| 124 |
123 119
|
eqeltrd |
|- ( ch -> ( Q ` k ) e. RR ) |
| 125 |
29
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 126 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 127 |
126
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 128 |
125 127
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 129 |
107 112 128
|
syl2anc |
|- ( ch -> ( Q ` ( i + 1 ) ) e. RR ) |
| 130 |
|
isof1o |
|- ( S Isom < , < ( ( 0 ... N ) , T ) -> S : ( 0 ... N ) -1-1-onto-> T ) |
| 131 |
102 130
|
syl |
|- ( ph -> S : ( 0 ... N ) -1-1-onto-> T ) |
| 132 |
|
f1of |
|- ( S : ( 0 ... N ) -1-1-onto-> T -> S : ( 0 ... N ) --> T ) |
| 133 |
131 132
|
syl |
|- ( ph -> S : ( 0 ... N ) --> T ) |
| 134 |
|
fzofzp1 |
|- ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ( 0 ... N ) ) |
| 135 |
13 134
|
syl |
|- ( ph -> ( J + 1 ) e. ( 0 ... N ) ) |
| 136 |
133 135
|
ffvelcdmd |
|- ( ph -> ( S ` ( J + 1 ) ) e. T ) |
| 137 |
101 136
|
sseldd |
|- ( ph -> ( S ` ( J + 1 ) ) e. RR ) |
| 138 |
107 137
|
syl |
|- ( ch -> ( S ` ( J + 1 ) ) e. RR ) |
| 139 |
|
elfzofz |
|- ( J e. ( 0 ..^ N ) -> J e. ( 0 ... N ) ) |
| 140 |
13 139
|
syl |
|- ( ph -> J e. ( 0 ... N ) ) |
| 141 |
133 140
|
ffvelcdmd |
|- ( ph -> ( S ` J ) e. T ) |
| 142 |
101 141
|
sseldd |
|- ( ph -> ( S ` J ) e. RR ) |
| 143 |
107 142
|
syl |
|- ( ch -> ( S ` J ) e. RR ) |
| 144 |
105
|
simprd |
|- ( ch -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 145 |
124
|
rexrd |
|- ( ch -> ( Q ` k ) e. RR* ) |
| 146 |
29
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 147 |
|
fzofzp1 |
|- ( k e. ( 0 ..^ M ) -> ( k + 1 ) e. ( 0 ... M ) ) |
| 148 |
147
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( k + 1 ) e. ( 0 ... M ) ) |
| 149 |
146 148
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` ( k + 1 ) ) e. RR ) |
| 150 |
149
|
rexrd |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` ( k + 1 ) ) e. RR* ) |
| 151 |
110 150
|
syl |
|- ( ch -> ( Q ` ( k + 1 ) ) e. RR* ) |
| 152 |
143
|
rexrd |
|- ( ch -> ( S ` J ) e. RR* ) |
| 153 |
138
|
rexrd |
|- ( ch -> ( S ` ( J + 1 ) ) e. RR* ) |
| 154 |
|
elfzoelz |
|- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
| 155 |
154
|
zred |
|- ( J e. ( 0 ..^ N ) -> J e. RR ) |
| 156 |
155
|
ltp1d |
|- ( J e. ( 0 ..^ N ) -> J < ( J + 1 ) ) |
| 157 |
13 156
|
syl |
|- ( ph -> J < ( J + 1 ) ) |
| 158 |
|
isoeq5 |
|- ( T = ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) -> ( S Isom < , < ( ( 0 ... N ) , T ) <-> S Isom < , < ( ( 0 ... N ) , ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) ) ) ) |
| 159 |
10 158
|
ax-mp |
|- ( S Isom < , < ( ( 0 ... N ) , T ) <-> S Isom < , < ( ( 0 ... N ) , ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) ) ) |
| 160 |
102 159
|
sylib |
|- ( ph -> S Isom < , < ( ( 0 ... N ) , ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) ) ) |
| 161 |
|
isorel |
|- ( ( S Isom < , < ( ( 0 ... N ) , ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) ) /\ ( J e. ( 0 ... N ) /\ ( J + 1 ) e. ( 0 ... N ) ) ) -> ( J < ( J + 1 ) <-> ( S ` J ) < ( S ` ( J + 1 ) ) ) ) |
| 162 |
160 140 135 161
|
syl12anc |
|- ( ph -> ( J < ( J + 1 ) <-> ( S ` J ) < ( S ` ( J + 1 ) ) ) ) |
| 163 |
157 162
|
mpbid |
|- ( ph -> ( S ` J ) < ( S ` ( J + 1 ) ) ) |
| 164 |
107 163
|
syl |
|- ( ch -> ( S ` J ) < ( S ` ( J + 1 ) ) ) |
| 165 |
145 151 152 153 164
|
ioossioobi |
|- ( ch -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> ( ( Q ` k ) <_ ( S ` J ) /\ ( S ` ( J + 1 ) ) <_ ( Q ` ( k + 1 ) ) ) ) ) |
| 166 |
144 165
|
mpbid |
|- ( ch -> ( ( Q ` k ) <_ ( S ` J ) /\ ( S ` ( J + 1 ) ) <_ ( Q ` ( k + 1 ) ) ) ) |
| 167 |
166
|
simpld |
|- ( ch -> ( Q ` k ) <_ ( S ` J ) ) |
| 168 |
124 143 138 167 164
|
lelttrd |
|- ( ch -> ( Q ` k ) < ( S ` ( J + 1 ) ) ) |
| 169 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 170 |
169
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ... M ) ) |
| 171 |
170
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> i e. ( 0 ... M ) ) |
| 172 |
105 171
|
syl |
|- ( ch -> i e. ( 0 ... M ) ) |
| 173 |
107 172 28
|
syl2anc |
|- ( ch -> ( ( V ` i ) - X ) e. RR ) |
| 174 |
9
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
| 175 |
172 173 174
|
syl2anc |
|- ( ch -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
| 176 |
175 173
|
eqeltrd |
|- ( ch -> ( Q ` i ) e. RR ) |
| 177 |
|
simpllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 178 |
105 177
|
syl |
|- ( ch -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 179 |
176 129 143 138 164 178
|
fourierdlem10 |
|- ( ch -> ( ( Q ` i ) <_ ( S ` J ) /\ ( S ` ( J + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) ) |
| 180 |
179
|
simprd |
|- ( ch -> ( S ` ( J + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) |
| 181 |
124 138 129 168 180
|
ltletrd |
|- ( ch -> ( Q ` k ) < ( Q ` ( i + 1 ) ) ) |
| 182 |
124 129 118 181
|
ltadd2dd |
|- ( ch -> ( X + ( Q ` k ) ) < ( X + ( Q ` ( i + 1 ) ) ) ) |
| 183 |
123
|
oveq2d |
|- ( ch -> ( X + ( Q ` k ) ) = ( X + ( ( V ` k ) - X ) ) ) |
| 184 |
107 52
|
syl |
|- ( ch -> X e. CC ) |
| 185 |
117
|
recnd |
|- ( ch -> ( V ` k ) e. CC ) |
| 186 |
184 185
|
pncan3d |
|- ( ch -> ( X + ( ( V ` k ) - X ) ) = ( V ` k ) ) |
| 187 |
183 186
|
eqtr2d |
|- ( ch -> ( V ` k ) = ( X + ( Q ` k ) ) ) |
| 188 |
112 126
|
syl |
|- ( ch -> ( i + 1 ) e. ( 0 ... M ) ) |
| 189 |
25
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
| 190 |
189 127
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
| 191 |
107 112 190
|
syl2anc |
|- ( ch -> ( V ` ( i + 1 ) ) e. RR ) |
| 192 |
191 118
|
resubcld |
|- ( ch -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
| 193 |
188 192
|
jca |
|- ( ch -> ( ( i + 1 ) e. ( 0 ... M ) /\ ( ( V ` ( i + 1 ) ) - X ) e. RR ) ) |
| 194 |
|
eleq1 |
|- ( k = ( i + 1 ) -> ( k e. ( 0 ... M ) <-> ( i + 1 ) e. ( 0 ... M ) ) ) |
| 195 |
|
fveq2 |
|- ( k = ( i + 1 ) -> ( V ` k ) = ( V ` ( i + 1 ) ) ) |
| 196 |
195
|
oveq1d |
|- ( k = ( i + 1 ) -> ( ( V ` k ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 197 |
196
|
eleq1d |
|- ( k = ( i + 1 ) -> ( ( ( V ` k ) - X ) e. RR <-> ( ( V ` ( i + 1 ) ) - X ) e. RR ) ) |
| 198 |
194 197
|
anbi12d |
|- ( k = ( i + 1 ) -> ( ( k e. ( 0 ... M ) /\ ( ( V ` k ) - X ) e. RR ) <-> ( ( i + 1 ) e. ( 0 ... M ) /\ ( ( V ` ( i + 1 ) ) - X ) e. RR ) ) ) |
| 199 |
|
fveq2 |
|- ( k = ( i + 1 ) -> ( Q ` k ) = ( Q ` ( i + 1 ) ) ) |
| 200 |
199 196
|
eqeq12d |
|- ( k = ( i + 1 ) -> ( ( Q ` k ) = ( ( V ` k ) - X ) <-> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) ) |
| 201 |
198 200
|
imbi12d |
|- ( k = ( i + 1 ) -> ( ( ( k e. ( 0 ... M ) /\ ( ( V ` k ) - X ) e. RR ) -> ( Q ` k ) = ( ( V ` k ) - X ) ) <-> ( ( ( i + 1 ) e. ( 0 ... M ) /\ ( ( V ` ( i + 1 ) ) - X ) e. RR ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) ) ) |
| 202 |
201 122
|
vtoclg |
|- ( ( i + 1 ) e. ( 0 ... M ) -> ( ( ( i + 1 ) e. ( 0 ... M ) /\ ( ( V ` ( i + 1 ) ) - X ) e. RR ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) ) |
| 203 |
188 193 202
|
sylc |
|- ( ch -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
| 204 |
203
|
oveq2d |
|- ( ch -> ( X + ( Q ` ( i + 1 ) ) ) = ( X + ( ( V ` ( i + 1 ) ) - X ) ) ) |
| 205 |
191
|
recnd |
|- ( ch -> ( V ` ( i + 1 ) ) e. CC ) |
| 206 |
184 205
|
pncan3d |
|- ( ch -> ( X + ( ( V ` ( i + 1 ) ) - X ) ) = ( V ` ( i + 1 ) ) ) |
| 207 |
204 206
|
eqtr2d |
|- ( ch -> ( V ` ( i + 1 ) ) = ( X + ( Q ` ( i + 1 ) ) ) ) |
| 208 |
182 187 207
|
3brtr4d |
|- ( ch -> ( V ` k ) < ( V ` ( i + 1 ) ) ) |
| 209 |
|
eleq1w |
|- ( l = i -> ( l e. ( 0 ..^ M ) <-> i e. ( 0 ..^ M ) ) ) |
| 210 |
209
|
anbi2d |
|- ( l = i -> ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) <-> ( ( ph /\ k e. ( 0 ..^ M ) ) /\ i e. ( 0 ..^ M ) ) ) ) |
| 211 |
|
oveq1 |
|- ( l = i -> ( l + 1 ) = ( i + 1 ) ) |
| 212 |
211
|
fveq2d |
|- ( l = i -> ( V ` ( l + 1 ) ) = ( V ` ( i + 1 ) ) ) |
| 213 |
212
|
breq2d |
|- ( l = i -> ( ( V ` k ) < ( V ` ( l + 1 ) ) <-> ( V ` k ) < ( V ` ( i + 1 ) ) ) ) |
| 214 |
210 213
|
anbi12d |
|- ( l = i -> ( ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( l + 1 ) ) ) <-> ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ i e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( i + 1 ) ) ) ) ) |
| 215 |
|
fveq2 |
|- ( l = i -> ( V ` l ) = ( V ` i ) ) |
| 216 |
215
|
breq2d |
|- ( l = i -> ( ( V ` k ) <_ ( V ` l ) <-> ( V ` k ) <_ ( V ` i ) ) ) |
| 217 |
214 216
|
imbi12d |
|- ( l = i -> ( ( ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( l + 1 ) ) ) -> ( V ` k ) <_ ( V ` l ) ) <-> ( ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ i e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( i + 1 ) ) ) -> ( V ` k ) <_ ( V ` i ) ) ) ) |
| 218 |
|
eleq1w |
|- ( h = k -> ( h e. ( 0 ..^ M ) <-> k e. ( 0 ..^ M ) ) ) |
| 219 |
218
|
anbi2d |
|- ( h = k -> ( ( ph /\ h e. ( 0 ..^ M ) ) <-> ( ph /\ k e. ( 0 ..^ M ) ) ) ) |
| 220 |
219
|
anbi1d |
|- ( h = k -> ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) <-> ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) ) ) |
| 221 |
|
fveq2 |
|- ( h = k -> ( V ` h ) = ( V ` k ) ) |
| 222 |
221
|
breq1d |
|- ( h = k -> ( ( V ` h ) < ( V ` ( l + 1 ) ) <-> ( V ` k ) < ( V ` ( l + 1 ) ) ) ) |
| 223 |
220 222
|
anbi12d |
|- ( h = k -> ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) <-> ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( l + 1 ) ) ) ) ) |
| 224 |
221
|
breq1d |
|- ( h = k -> ( ( V ` h ) <_ ( V ` l ) <-> ( V ` k ) <_ ( V ` l ) ) ) |
| 225 |
223 224
|
imbi12d |
|- ( h = k -> ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> ( V ` h ) <_ ( V ` l ) ) <-> ( ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( l + 1 ) ) ) -> ( V ` k ) <_ ( V ` l ) ) ) ) |
| 226 |
|
elfzoelz |
|- ( h e. ( 0 ..^ M ) -> h e. ZZ ) |
| 227 |
226
|
ad3antlr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> h e. ZZ ) |
| 228 |
|
elfzoelz |
|- ( l e. ( 0 ..^ M ) -> l e. ZZ ) |
| 229 |
228
|
ad2antlr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> l e. ZZ ) |
| 230 |
|
simplr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ -. h < ( l + 1 ) ) -> ( V ` h ) < ( V ` ( l + 1 ) ) ) |
| 231 |
25
|
adantr |
|- ( ( ph /\ l e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
| 232 |
|
fzofzp1 |
|- ( l e. ( 0 ..^ M ) -> ( l + 1 ) e. ( 0 ... M ) ) |
| 233 |
232
|
adantl |
|- ( ( ph /\ l e. ( 0 ..^ M ) ) -> ( l + 1 ) e. ( 0 ... M ) ) |
| 234 |
231 233
|
ffvelcdmd |
|- ( ( ph /\ l e. ( 0 ..^ M ) ) -> ( V ` ( l + 1 ) ) e. RR ) |
| 235 |
234
|
adantlr |
|- ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) -> ( V ` ( l + 1 ) ) e. RR ) |
| 236 |
235
|
adantr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> ( V ` ( l + 1 ) ) e. RR ) |
| 237 |
25
|
adantr |
|- ( ( ph /\ h e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
| 238 |
|
elfzofz |
|- ( h e. ( 0 ..^ M ) -> h e. ( 0 ... M ) ) |
| 239 |
238
|
adantl |
|- ( ( ph /\ h e. ( 0 ..^ M ) ) -> h e. ( 0 ... M ) ) |
| 240 |
237 239
|
ffvelcdmd |
|- ( ( ph /\ h e. ( 0 ..^ M ) ) -> ( V ` h ) e. RR ) |
| 241 |
240
|
ad2antrr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> ( V ` h ) e. RR ) |
| 242 |
228
|
zred |
|- ( l e. ( 0 ..^ M ) -> l e. RR ) |
| 243 |
|
peano2re |
|- ( l e. RR -> ( l + 1 ) e. RR ) |
| 244 |
242 243
|
syl |
|- ( l e. ( 0 ..^ M ) -> ( l + 1 ) e. RR ) |
| 245 |
244
|
ad2antlr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> ( l + 1 ) e. RR ) |
| 246 |
226
|
zred |
|- ( h e. ( 0 ..^ M ) -> h e. RR ) |
| 247 |
246
|
ad3antlr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> h e. RR ) |
| 248 |
|
simpr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> -. h < ( l + 1 ) ) |
| 249 |
245 247 248
|
nltled |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> ( l + 1 ) <_ h ) |
| 250 |
228
|
peano2zd |
|- ( l e. ( 0 ..^ M ) -> ( l + 1 ) e. ZZ ) |
| 251 |
250
|
ad2antlr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) -> ( l + 1 ) e. ZZ ) |
| 252 |
226
|
ad2antrr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) -> h e. ZZ ) |
| 253 |
|
simpr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) -> ( l + 1 ) <_ h ) |
| 254 |
|
eluz2 |
|- ( h e. ( ZZ>= ` ( l + 1 ) ) <-> ( ( l + 1 ) e. ZZ /\ h e. ZZ /\ ( l + 1 ) <_ h ) ) |
| 255 |
251 252 253 254
|
syl3anbrc |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) -> h e. ( ZZ>= ` ( l + 1 ) ) ) |
| 256 |
255
|
adantlll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) -> h e. ( ZZ>= ` ( l + 1 ) ) ) |
| 257 |
|
simplll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> ph ) |
| 258 |
|
0zd |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> 0 e. ZZ ) |
| 259 |
|
elfzoel2 |
|- ( h e. ( 0 ..^ M ) -> M e. ZZ ) |
| 260 |
259
|
ad2antrr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> M e. ZZ ) |
| 261 |
|
elfzelz |
|- ( i e. ( ( l + 1 ) ... h ) -> i e. ZZ ) |
| 262 |
261
|
adantl |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> i e. ZZ ) |
| 263 |
|
0red |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> 0 e. RR ) |
| 264 |
261
|
zred |
|- ( i e. ( ( l + 1 ) ... h ) -> i e. RR ) |
| 265 |
264
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> i e. RR ) |
| 266 |
242
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> l e. RR ) |
| 267 |
|
elfzole1 |
|- ( l e. ( 0 ..^ M ) -> 0 <_ l ) |
| 268 |
267
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> 0 <_ l ) |
| 269 |
266 243
|
syl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> ( l + 1 ) e. RR ) |
| 270 |
266
|
ltp1d |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> l < ( l + 1 ) ) |
| 271 |
|
elfzle1 |
|- ( i e. ( ( l + 1 ) ... h ) -> ( l + 1 ) <_ i ) |
| 272 |
271
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> ( l + 1 ) <_ i ) |
| 273 |
266 269 265 270 272
|
ltletrd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> l < i ) |
| 274 |
263 266 265 268 273
|
lelttrd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> 0 < i ) |
| 275 |
263 265 274
|
ltled |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> 0 <_ i ) |
| 276 |
275
|
adantll |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> 0 <_ i ) |
| 277 |
264
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> i e. RR ) |
| 278 |
259
|
zred |
|- ( h e. ( 0 ..^ M ) -> M e. RR ) |
| 279 |
278
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> M e. RR ) |
| 280 |
246
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> h e. RR ) |
| 281 |
|
elfzle2 |
|- ( i e. ( ( l + 1 ) ... h ) -> i <_ h ) |
| 282 |
281
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> i <_ h ) |
| 283 |
|
elfzolt2 |
|- ( h e. ( 0 ..^ M ) -> h < M ) |
| 284 |
283
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> h < M ) |
| 285 |
277 280 279 282 284
|
lelttrd |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> i < M ) |
| 286 |
277 279 285
|
ltled |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... h ) ) -> i <_ M ) |
| 287 |
286
|
adantlr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> i <_ M ) |
| 288 |
258 260 262 276 287
|
elfzd |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> i e. ( 0 ... M ) ) |
| 289 |
288
|
adantlll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> i e. ( 0 ... M ) ) |
| 290 |
257 289 26
|
syl2anc |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... h ) ) -> ( V ` i ) e. RR ) |
| 291 |
290
|
adantlr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) /\ i e. ( ( l + 1 ) ... h ) ) -> ( V ` i ) e. RR ) |
| 292 |
|
simplll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ph ) |
| 293 |
|
0zd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> 0 e. ZZ ) |
| 294 |
|
elfzelz |
|- ( i e. ( ( l + 1 ) ... ( h - 1 ) ) -> i e. ZZ ) |
| 295 |
294
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i e. ZZ ) |
| 296 |
|
0red |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> 0 e. RR ) |
| 297 |
295
|
zred |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i e. RR ) |
| 298 |
242
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> l e. RR ) |
| 299 |
267
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> 0 <_ l ) |
| 300 |
298 243
|
syl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ( l + 1 ) e. RR ) |
| 301 |
298
|
ltp1d |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> l < ( l + 1 ) ) |
| 302 |
|
elfzle1 |
|- ( i e. ( ( l + 1 ) ... ( h - 1 ) ) -> ( l + 1 ) <_ i ) |
| 303 |
302
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ( l + 1 ) <_ i ) |
| 304 |
298 300 297 301 303
|
ltletrd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> l < i ) |
| 305 |
296 298 297 299 304
|
lelttrd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> 0 < i ) |
| 306 |
296 297 305
|
ltled |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> 0 <_ i ) |
| 307 |
|
eluz2 |
|- ( i e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ i e. ZZ /\ 0 <_ i ) ) |
| 308 |
293 295 306 307
|
syl3anbrc |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 309 |
308
|
adantll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 310 |
|
elfzoel2 |
|- ( l e. ( 0 ..^ M ) -> M e. ZZ ) |
| 311 |
310
|
ad2antlr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> M e. ZZ ) |
| 312 |
294
|
zred |
|- ( i e. ( ( l + 1 ) ... ( h - 1 ) ) -> i e. RR ) |
| 313 |
312
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i e. RR ) |
| 314 |
|
peano2rem |
|- ( h e. RR -> ( h - 1 ) e. RR ) |
| 315 |
246 314
|
syl |
|- ( h e. ( 0 ..^ M ) -> ( h - 1 ) e. RR ) |
| 316 |
315
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ( h - 1 ) e. RR ) |
| 317 |
278
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> M e. RR ) |
| 318 |
|
elfzle2 |
|- ( i e. ( ( l + 1 ) ... ( h - 1 ) ) -> i <_ ( h - 1 ) ) |
| 319 |
318
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i <_ ( h - 1 ) ) |
| 320 |
246
|
ltm1d |
|- ( h e. ( 0 ..^ M ) -> ( h - 1 ) < h ) |
| 321 |
315 246 278 320 283
|
lttrd |
|- ( h e. ( 0 ..^ M ) -> ( h - 1 ) < M ) |
| 322 |
321
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ( h - 1 ) < M ) |
| 323 |
313 316 317 319 322
|
lelttrd |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i < M ) |
| 324 |
323
|
adantll |
|- ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i < M ) |
| 325 |
324
|
adantlr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i < M ) |
| 326 |
|
elfzo2 |
|- ( i e. ( 0 ..^ M ) <-> ( i e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ i < M ) ) |
| 327 |
309 311 325 326
|
syl3anbrc |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> i e. ( 0 ..^ M ) ) |
| 328 |
169 26
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
| 329 |
47
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) |
| 330 |
329
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
| 331 |
328 190 330
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) <_ ( V ` ( i + 1 ) ) ) |
| 332 |
292 327 331
|
syl2anc |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ( V ` i ) <_ ( V ` ( i + 1 ) ) ) |
| 333 |
332
|
adantlr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) /\ i e. ( ( l + 1 ) ... ( h - 1 ) ) ) -> ( V ` i ) <_ ( V ` ( i + 1 ) ) ) |
| 334 |
256 291 333
|
monoord |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( l + 1 ) <_ h ) -> ( V ` ( l + 1 ) ) <_ ( V ` h ) ) |
| 335 |
249 334
|
syldan |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> ( V ` ( l + 1 ) ) <_ ( V ` h ) ) |
| 336 |
236 241 335
|
lensymd |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ -. h < ( l + 1 ) ) -> -. ( V ` h ) < ( V ` ( l + 1 ) ) ) |
| 337 |
336
|
adantlr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ -. h < ( l + 1 ) ) -> -. ( V ` h ) < ( V ` ( l + 1 ) ) ) |
| 338 |
230 337
|
condan |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> h < ( l + 1 ) ) |
| 339 |
|
zleltp1 |
|- ( ( h e. ZZ /\ l e. ZZ ) -> ( h <_ l <-> h < ( l + 1 ) ) ) |
| 340 |
227 229 339
|
syl2anc |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> ( h <_ l <-> h < ( l + 1 ) ) ) |
| 341 |
338 340
|
mpbird |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> h <_ l ) |
| 342 |
|
eluz2 |
|- ( l e. ( ZZ>= ` h ) <-> ( h e. ZZ /\ l e. ZZ /\ h <_ l ) ) |
| 343 |
227 229 341 342
|
syl3anbrc |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> l e. ( ZZ>= ` h ) ) |
| 344 |
25
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> V : ( 0 ... M ) --> RR ) |
| 345 |
|
0zd |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> 0 e. ZZ ) |
| 346 |
259
|
ad2antrr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> M e. ZZ ) |
| 347 |
|
elfzelz |
|- ( i e. ( h ... l ) -> i e. ZZ ) |
| 348 |
347
|
adantl |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> i e. ZZ ) |
| 349 |
|
0red |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> 0 e. RR ) |
| 350 |
246
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> h e. RR ) |
| 351 |
347
|
zred |
|- ( i e. ( h ... l ) -> i e. RR ) |
| 352 |
351
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> i e. RR ) |
| 353 |
|
elfzole1 |
|- ( h e. ( 0 ..^ M ) -> 0 <_ h ) |
| 354 |
353
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> 0 <_ h ) |
| 355 |
|
elfzle1 |
|- ( i e. ( h ... l ) -> h <_ i ) |
| 356 |
355
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> h <_ i ) |
| 357 |
349 350 352 354 356
|
letrd |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> 0 <_ i ) |
| 358 |
357
|
adantlr |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> 0 <_ i ) |
| 359 |
351
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> i e. RR ) |
| 360 |
310
|
zred |
|- ( l e. ( 0 ..^ M ) -> M e. RR ) |
| 361 |
360
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> M e. RR ) |
| 362 |
242
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> l e. RR ) |
| 363 |
|
elfzle2 |
|- ( i e. ( h ... l ) -> i <_ l ) |
| 364 |
363
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> i <_ l ) |
| 365 |
|
elfzolt2 |
|- ( l e. ( 0 ..^ M ) -> l < M ) |
| 366 |
365
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> l < M ) |
| 367 |
359 362 361 364 366
|
lelttrd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> i < M ) |
| 368 |
359 361 367
|
ltled |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... l ) ) -> i <_ M ) |
| 369 |
368
|
adantll |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> i <_ M ) |
| 370 |
345 346 348 358 369
|
elfzd |
|- ( ( ( h e. ( 0 ..^ M ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> i e. ( 0 ... M ) ) |
| 371 |
370
|
adantlll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> i e. ( 0 ... M ) ) |
| 372 |
344 371
|
ffvelcdmd |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... l ) ) -> ( V ` i ) e. RR ) |
| 373 |
372
|
adantlr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... l ) ) -> ( V ` i ) e. RR ) |
| 374 |
|
simp-4l |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> ph ) |
| 375 |
|
0zd |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> 0 e. ZZ ) |
| 376 |
|
elfzelz |
|- ( i e. ( h ... ( l - 1 ) ) -> i e. ZZ ) |
| 377 |
376
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. ZZ ) |
| 378 |
|
0red |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> 0 e. RR ) |
| 379 |
246
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> h e. RR ) |
| 380 |
377
|
zred |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. RR ) |
| 381 |
353
|
adantr |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> 0 <_ h ) |
| 382 |
|
elfzle1 |
|- ( i e. ( h ... ( l - 1 ) ) -> h <_ i ) |
| 383 |
382
|
adantl |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> h <_ i ) |
| 384 |
378 379 380 381 383
|
letrd |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> 0 <_ i ) |
| 385 |
375 377 384 307
|
syl3anbrc |
|- ( ( h e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 386 |
385
|
adantll |
|- ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 387 |
386
|
ad4ant14 |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. ( ZZ>= ` 0 ) ) |
| 388 |
310
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> M e. ZZ ) |
| 389 |
376
|
zred |
|- ( i e. ( h ... ( l - 1 ) ) -> i e. RR ) |
| 390 |
389
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. RR ) |
| 391 |
242
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> l e. RR ) |
| 392 |
360
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> M e. RR ) |
| 393 |
|
elfzle2 |
|- ( i e. ( h ... ( l - 1 ) ) -> i <_ ( l - 1 ) ) |
| 394 |
393
|
adantl |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i <_ ( l - 1 ) ) |
| 395 |
|
zltlem1 |
|- ( ( i e. ZZ /\ l e. ZZ ) -> ( i < l <-> i <_ ( l - 1 ) ) ) |
| 396 |
376 228 395
|
syl2anr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> ( i < l <-> i <_ ( l - 1 ) ) ) |
| 397 |
394 396
|
mpbird |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i < l ) |
| 398 |
365
|
adantr |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> l < M ) |
| 399 |
390 391 392 397 398
|
lttrd |
|- ( ( l e. ( 0 ..^ M ) /\ i e. ( h ... ( l - 1 ) ) ) -> i < M ) |
| 400 |
399
|
adantll |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> i < M ) |
| 401 |
400
|
adantlr |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> i < M ) |
| 402 |
387 388 401 326
|
syl3anbrc |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> i e. ( 0 ..^ M ) ) |
| 403 |
374 402 331
|
syl2anc |
|- ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) /\ i e. ( h ... ( l - 1 ) ) ) -> ( V ` i ) <_ ( V ` ( i + 1 ) ) ) |
| 404 |
343 373 403
|
monoord |
|- ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> ( V ` h ) <_ ( V ` l ) ) |
| 405 |
225 404
|
chvarvv |
|- ( ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( l + 1 ) ) ) -> ( V ` k ) <_ ( V ` l ) ) |
| 406 |
217 405
|
chvarvv |
|- ( ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ i e. ( 0 ..^ M ) ) /\ ( V ` k ) < ( V ` ( i + 1 ) ) ) -> ( V ` k ) <_ ( V ` i ) ) |
| 407 |
110 112 208 406
|
syl21anc |
|- ( ch -> ( V ` k ) <_ ( V ` i ) ) |
| 408 |
107 112
|
jca |
|- ( ch -> ( ph /\ i e. ( 0 ..^ M ) ) ) |
| 409 |
110 149
|
syl |
|- ( ch -> ( Q ` ( k + 1 ) ) e. RR ) |
| 410 |
179
|
simpld |
|- ( ch -> ( Q ` i ) <_ ( S ` J ) ) |
| 411 |
176 143 138 410 164
|
lelttrd |
|- ( ch -> ( Q ` i ) < ( S ` ( J + 1 ) ) ) |
| 412 |
166
|
simprd |
|- ( ch -> ( S ` ( J + 1 ) ) <_ ( Q ` ( k + 1 ) ) ) |
| 413 |
176 138 409 411 412
|
ltletrd |
|- ( ch -> ( Q ` i ) < ( Q ` ( k + 1 ) ) ) |
| 414 |
176 409 118 413
|
ltadd2dd |
|- ( ch -> ( X + ( Q ` i ) ) < ( X + ( Q ` ( k + 1 ) ) ) ) |
| 415 |
175
|
oveq2d |
|- ( ch -> ( X + ( Q ` i ) ) = ( X + ( ( V ` i ) - X ) ) ) |
| 416 |
107 172 26
|
syl2anc |
|- ( ch -> ( V ` i ) e. RR ) |
| 417 |
416
|
recnd |
|- ( ch -> ( V ` i ) e. CC ) |
| 418 |
184 417
|
pncan3d |
|- ( ch -> ( X + ( ( V ` i ) - X ) ) = ( V ` i ) ) |
| 419 |
415 418
|
eqtr2d |
|- ( ch -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
| 420 |
9
|
a1i |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) ) |
| 421 |
|
fveq2 |
|- ( i = ( k + 1 ) -> ( V ` i ) = ( V ` ( k + 1 ) ) ) |
| 422 |
421
|
oveq1d |
|- ( i = ( k + 1 ) -> ( ( V ` i ) - X ) = ( ( V ` ( k + 1 ) ) - X ) ) |
| 423 |
422
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ..^ M ) ) /\ i = ( k + 1 ) ) -> ( ( V ` i ) - X ) = ( ( V ` ( k + 1 ) ) - X ) ) |
| 424 |
25
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
| 425 |
424 148
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( V ` ( k + 1 ) ) e. RR ) |
| 426 |
1
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> X e. RR ) |
| 427 |
425 426
|
resubcld |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( ( V ` ( k + 1 ) ) - X ) e. RR ) |
| 428 |
420 423 148 427
|
fvmptd |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` ( k + 1 ) ) = ( ( V ` ( k + 1 ) ) - X ) ) |
| 429 |
107 109 428
|
syl2anc |
|- ( ch -> ( Q ` ( k + 1 ) ) = ( ( V ` ( k + 1 ) ) - X ) ) |
| 430 |
429
|
oveq2d |
|- ( ch -> ( X + ( Q ` ( k + 1 ) ) ) = ( X + ( ( V ` ( k + 1 ) ) - X ) ) ) |
| 431 |
110 425
|
syl |
|- ( ch -> ( V ` ( k + 1 ) ) e. RR ) |
| 432 |
431
|
recnd |
|- ( ch -> ( V ` ( k + 1 ) ) e. CC ) |
| 433 |
184 432
|
pncan3d |
|- ( ch -> ( X + ( ( V ` ( k + 1 ) ) - X ) ) = ( V ` ( k + 1 ) ) ) |
| 434 |
430 433
|
eqtr2d |
|- ( ch -> ( V ` ( k + 1 ) ) = ( X + ( Q ` ( k + 1 ) ) ) ) |
| 435 |
414 419 434
|
3brtr4d |
|- ( ch -> ( V ` i ) < ( V ` ( k + 1 ) ) ) |
| 436 |
|
eleq1w |
|- ( l = k -> ( l e. ( 0 ..^ M ) <-> k e. ( 0 ..^ M ) ) ) |
| 437 |
436
|
anbi2d |
|- ( l = k -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) <-> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ k e. ( 0 ..^ M ) ) ) ) |
| 438 |
|
oveq1 |
|- ( l = k -> ( l + 1 ) = ( k + 1 ) ) |
| 439 |
438
|
fveq2d |
|- ( l = k -> ( V ` ( l + 1 ) ) = ( V ` ( k + 1 ) ) ) |
| 440 |
439
|
breq2d |
|- ( l = k -> ( ( V ` i ) < ( V ` ( l + 1 ) ) <-> ( V ` i ) < ( V ` ( k + 1 ) ) ) ) |
| 441 |
437 440
|
anbi12d |
|- ( l = k -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( l + 1 ) ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ k e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( k + 1 ) ) ) ) ) |
| 442 |
|
fveq2 |
|- ( l = k -> ( V ` l ) = ( V ` k ) ) |
| 443 |
442
|
breq2d |
|- ( l = k -> ( ( V ` i ) <_ ( V ` l ) <-> ( V ` i ) <_ ( V ` k ) ) ) |
| 444 |
441 443
|
imbi12d |
|- ( l = k -> ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( l + 1 ) ) ) -> ( V ` i ) <_ ( V ` l ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ k e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( k + 1 ) ) ) -> ( V ` i ) <_ ( V ` k ) ) ) ) |
| 445 |
|
eleq1w |
|- ( h = i -> ( h e. ( 0 ..^ M ) <-> i e. ( 0 ..^ M ) ) ) |
| 446 |
445
|
anbi2d |
|- ( h = i -> ( ( ph /\ h e. ( 0 ..^ M ) ) <-> ( ph /\ i e. ( 0 ..^ M ) ) ) ) |
| 447 |
446
|
anbi1d |
|- ( h = i -> ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) <-> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) ) ) |
| 448 |
|
fveq2 |
|- ( h = i -> ( V ` h ) = ( V ` i ) ) |
| 449 |
448
|
breq1d |
|- ( h = i -> ( ( V ` h ) < ( V ` ( l + 1 ) ) <-> ( V ` i ) < ( V ` ( l + 1 ) ) ) ) |
| 450 |
447 449
|
anbi12d |
|- ( h = i -> ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( l + 1 ) ) ) ) ) |
| 451 |
448
|
breq1d |
|- ( h = i -> ( ( V ` h ) <_ ( V ` l ) <-> ( V ` i ) <_ ( V ` l ) ) ) |
| 452 |
450 451
|
imbi12d |
|- ( h = i -> ( ( ( ( ( ph /\ h e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` h ) < ( V ` ( l + 1 ) ) ) -> ( V ` h ) <_ ( V ` l ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( l + 1 ) ) ) -> ( V ` i ) <_ ( V ` l ) ) ) ) |
| 453 |
452 404
|
chvarvv |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ l e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( l + 1 ) ) ) -> ( V ` i ) <_ ( V ` l ) ) |
| 454 |
444 453
|
chvarvv |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ k e. ( 0 ..^ M ) ) /\ ( V ` i ) < ( V ` ( k + 1 ) ) ) -> ( V ` i ) <_ ( V ` k ) ) |
| 455 |
408 109 435 454
|
syl21anc |
|- ( ch -> ( V ` i ) <_ ( V ` k ) ) |
| 456 |
117 416
|
letri3d |
|- ( ch -> ( ( V ` k ) = ( V ` i ) <-> ( ( V ` k ) <_ ( V ` i ) /\ ( V ` i ) <_ ( V ` k ) ) ) ) |
| 457 |
407 455 456
|
mpbir2and |
|- ( ch -> ( V ` k ) = ( V ` i ) ) |
| 458 |
2 3 4
|
fourierdlem34 |
|- ( ph -> V : ( 0 ... M ) -1-1-> RR ) |
| 459 |
107 458
|
syl |
|- ( ch -> V : ( 0 ... M ) -1-1-> RR ) |
| 460 |
|
f1fveq |
|- ( ( V : ( 0 ... M ) -1-1-> RR /\ ( k e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) -> ( ( V ` k ) = ( V ` i ) <-> k = i ) ) |
| 461 |
459 115 172 460
|
syl12anc |
|- ( ch -> ( ( V ` k ) = ( V ` i ) <-> k = i ) ) |
| 462 |
457 461
|
mpbid |
|- ( ch -> k = i ) |
| 463 |
15 462
|
sylbir |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) -> k = i ) |
| 464 |
463
|
ex |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) -> k = i ) ) |
| 465 |
|
simpl |
|- ( ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ k = i ) -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 466 |
|
fveq2 |
|- ( k = i -> ( Q ` k ) = ( Q ` i ) ) |
| 467 |
|
oveq1 |
|- ( k = i -> ( k + 1 ) = ( i + 1 ) ) |
| 468 |
467
|
fveq2d |
|- ( k = i -> ( Q ` ( k + 1 ) ) = ( Q ` ( i + 1 ) ) ) |
| 469 |
466 468
|
oveq12d |
|- ( k = i -> ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 470 |
469
|
eqcomd |
|- ( k = i -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 471 |
470
|
adantl |
|- ( ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ k = i ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 472 |
465 471
|
sseqtrd |
|- ( ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ k = i ) -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 473 |
472
|
ex |
|- ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( k = i -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) ) |
| 474 |
473
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) -> ( k = i -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) ) |
| 475 |
464 474
|
impbid |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ( 0 ..^ M ) ) -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> k = i ) ) |
| 476 |
475
|
ralrimiva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. k e. ( 0 ..^ M ) ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> k = i ) ) |
| 477 |
476
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> A. k e. ( 0 ..^ M ) ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> k = i ) ) ) |
| 478 |
477
|
reximdva |
|- ( ph -> ( E. i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ M ) A. k e. ( 0 ..^ M ) ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> k = i ) ) ) |
| 479 |
104 478
|
mpd |
|- ( ph -> E. i e. ( 0 ..^ M ) A. k e. ( 0 ..^ M ) ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> k = i ) ) |
| 480 |
|
reu6 |
|- ( E! k e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> E. i e. ( 0 ..^ M ) A. k e. ( 0 ..^ M ) ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) <-> k = i ) ) |
| 481 |
479 480
|
sylibr |
|- ( ph -> E! k e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 482 |
|
fveq2 |
|- ( i = k -> ( Q ` i ) = ( Q ` k ) ) |
| 483 |
|
oveq1 |
|- ( i = k -> ( i + 1 ) = ( k + 1 ) ) |
| 484 |
483
|
fveq2d |
|- ( i = k -> ( Q ` ( i + 1 ) ) = ( Q ` ( k + 1 ) ) ) |
| 485 |
482 484
|
oveq12d |
|- ( i = k -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 486 |
485
|
sseq2d |
|- ( i = k -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) ) |
| 487 |
486
|
cbvreuvw |
|- ( E! i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> E! k e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` k ) (,) ( Q ` ( k + 1 ) ) ) ) |
| 488 |
481 487
|
sylibr |
|- ( ph -> E! i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 489 |
|
riotacl |
|- ( E! i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( 0 ..^ M ) ) |
| 490 |
488 489
|
syl |
|- ( ph -> ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( 0 ..^ M ) ) |
| 491 |
14 490
|
eqeltrid |
|- ( ph -> U e. ( 0 ..^ M ) ) |
| 492 |
14
|
eqcomi |
|- ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = U |
| 493 |
492
|
a1i |
|- ( ph -> ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = U ) |
| 494 |
|
fveq2 |
|- ( i = U -> ( Q ` i ) = ( Q ` U ) ) |
| 495 |
|
oveq1 |
|- ( i = U -> ( i + 1 ) = ( U + 1 ) ) |
| 496 |
495
|
fveq2d |
|- ( i = U -> ( Q ` ( i + 1 ) ) = ( Q ` ( U + 1 ) ) ) |
| 497 |
494 496
|
oveq12d |
|- ( i = U -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) ) |
| 498 |
497
|
sseq2d |
|- ( i = U -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) ) ) |
| 499 |
498
|
riota2 |
|- ( ( U e. ( 0 ..^ M ) /\ E! i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) <-> ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = U ) ) |
| 500 |
491 488 499
|
syl2anc |
|- ( ph -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) <-> ( iota_ i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = U ) ) |
| 501 |
493 500
|
mpbird |
|- ( ph -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) ) |
| 502 |
491 501
|
jca |
|- ( ph -> ( U e. ( 0 ..^ M ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) ) ) |