| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem50.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 2 |
|
fourierdlem50.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 3 |
|
fourierdlem50.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem50.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem50.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
fourierdlem50.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 7 |
|
fourierdlem50.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 8 |
|
fourierdlem50.ab |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( - π [,] π ) ) |
| 9 |
|
fourierdlem50.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 10 |
|
fourierdlem50.t |
⊢ 𝑇 = ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) |
| 11 |
|
fourierdlem50.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝑇 ) − 1 ) |
| 12 |
|
fourierdlem50.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
| 13 |
|
fourierdlem50.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ 𝑁 ) ) |
| 14 |
|
fourierdlem50.u |
⊢ 𝑈 = ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 15 |
|
fourierdlem50.ch |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 16 |
5 6 7
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 17 |
2 3 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
| 18 |
|
pire |
⊢ π ∈ ℝ |
| 19 |
18
|
renegcli |
⊢ - π ∈ ℝ |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 21 |
20 1
|
readdcld |
⊢ ( 𝜑 → ( - π + 𝑋 ) ∈ ℝ ) |
| 22 |
18
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 23 |
22 1
|
readdcld |
⊢ ( 𝜑 → ( π + 𝑋 ) ∈ ℝ ) |
| 24 |
21 23
|
iccssred |
⊢ ( 𝜑 → ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ⊆ ℝ ) |
| 25 |
17 24
|
fssd |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 26 |
25
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 28 |
26 27
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 29 |
28 9
|
fmptd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 30 |
9
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 0 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 0 ) − 𝑋 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 0 ) − 𝑋 ) ) |
| 34 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℕ0 ) |
| 36 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 37 |
35 36
|
sseqtrdi |
⊢ ( 𝜑 → ℕ ⊆ ( ℤ≥ ‘ 0 ) ) |
| 38 |
37 3
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 39 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 41 |
25 40
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑉 ‘ 0 ) ∈ ℝ ) |
| 42 |
41 1
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 0 ) − 𝑋 ) ∈ ℝ ) |
| 43 |
30 33 40 42
|
fvmptd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( ( 𝑉 ‘ 0 ) − 𝑋 ) ) |
| 44 |
2
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 45 |
3 44
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 46 |
4 45
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 47 |
46
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 48 |
47
|
simpld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ) |
| 49 |
48
|
simpld |
⊢ ( 𝜑 → ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ) |
| 50 |
49
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 0 ) − 𝑋 ) = ( ( - π + 𝑋 ) − 𝑋 ) ) |
| 51 |
20
|
recnd |
⊢ ( 𝜑 → - π ∈ ℂ ) |
| 52 |
1
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 53 |
51 52
|
pncand |
⊢ ( 𝜑 → ( ( - π + 𝑋 ) − 𝑋 ) = - π ) |
| 54 |
43 50 53
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
| 55 |
20
|
rexrd |
⊢ ( 𝜑 → - π ∈ ℝ* ) |
| 56 |
22
|
rexrd |
⊢ ( 𝜑 → π ∈ ℝ* ) |
| 57 |
5
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 58 |
5 6 5 57 16
|
eliccd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 59 |
8 58
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( - π [,] π ) ) |
| 60 |
|
iccgelb |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐴 ∈ ( - π [,] π ) ) → - π ≤ 𝐴 ) |
| 61 |
55 56 59 60
|
syl3anc |
⊢ ( 𝜑 → - π ≤ 𝐴 ) |
| 62 |
54 61
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ≤ 𝐴 ) |
| 63 |
6
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 64 |
5 6 6 16 63
|
eliccd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 65 |
8 64
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( - π [,] π ) ) |
| 66 |
|
iccleub |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐵 ∈ ( - π [,] π ) ) → 𝐵 ≤ π ) |
| 67 |
55 56 65 66
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ≤ π ) |
| 68 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑀 ) ) |
| 69 |
68
|
oveq1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ) |
| 71 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 72 |
38 71
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 73 |
25 72
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑀 ) ∈ ℝ ) |
| 74 |
73 1
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ∈ ℝ ) |
| 75 |
30 70 72 74
|
fvmptd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) ) |
| 76 |
48
|
simprd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) |
| 77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑀 ) − 𝑋 ) = ( ( π + 𝑋 ) − 𝑋 ) ) |
| 78 |
22
|
recnd |
⊢ ( 𝜑 → π ∈ ℂ ) |
| 79 |
78 52
|
pncand |
⊢ ( 𝜑 → ( ( π + 𝑋 ) − 𝑋 ) = π ) |
| 80 |
75 77 79
|
3eqtrrd |
⊢ ( 𝜑 → π = ( 𝑄 ‘ 𝑀 ) ) |
| 81 |
67 80
|
breqtrd |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝑄 ‘ 𝑀 ) ) |
| 82 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 84 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
| 85 |
9
|
rnmptfi |
⊢ ( ( 0 ... 𝑀 ) ∈ Fin → ran 𝑄 ∈ Fin ) |
| 86 |
84 85
|
syl |
⊢ ( 𝜑 → ran 𝑄 ∈ Fin ) |
| 87 |
|
infi |
⊢ ( ran 𝑄 ∈ Fin → ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ Fin ) |
| 88 |
86 87
|
syl |
⊢ ( 𝜑 → ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ Fin ) |
| 89 |
|
unfi |
⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ Fin ) → ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ∈ Fin ) |
| 90 |
83 88 89
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ∈ Fin ) |
| 91 |
10 90
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
| 92 |
5 6
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 93 |
|
prssg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ { 𝐴 , 𝐵 } ⊆ ℝ ) ) |
| 94 |
5 6 93
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ { 𝐴 , 𝐵 } ⊆ ℝ ) ) |
| 95 |
92 94
|
mpbid |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ ℝ ) |
| 96 |
|
inss2 |
⊢ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ( 𝐴 (,) 𝐵 ) |
| 97 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 98 |
96 97
|
sstri |
⊢ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ℝ |
| 99 |
98
|
a1i |
⊢ ( 𝜑 → ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ℝ ) |
| 100 |
95 99
|
unssd |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ ℝ ) |
| 101 |
10 100
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ ℝ ) |
| 102 |
91 101 12 11
|
fourierdlem36 |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ) |
| 103 |
|
eqid |
⊢ sup ( { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑥 ) ≤ ( 𝑆 ‘ 𝐽 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑥 ) ≤ ( 𝑆 ‘ 𝐽 ) } , ℝ , < ) |
| 104 |
3 5 6 16 29 62 81 13 10 102 103
|
fourierdlem20 |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 105 |
15
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 106 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝜑 ) |
| 107 |
105 106
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
| 108 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 109 |
105 108
|
syl |
⊢ ( 𝜒 → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 110 |
107 109
|
jca |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 111 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 112 |
105 111
|
syl |
⊢ ( 𝜒 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 113 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 114 |
113
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 115 |
105 114
|
syl |
⊢ ( 𝜒 → 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 116 |
107 25
|
syl |
⊢ ( 𝜒 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 117 |
116 115
|
ffvelcdmd |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) ∈ ℝ ) |
| 118 |
107 1
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℝ ) |
| 119 |
117 118
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) |
| 120 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑘 ) ) |
| 121 |
120
|
oveq1d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) |
| 122 |
121 9
|
fvmptg |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) |
| 123 |
115 119 122
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) |
| 124 |
123 119
|
eqeltrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) ∈ ℝ ) |
| 125 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 126 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 128 |
125 127
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 129 |
107 112 128
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 130 |
|
isof1o |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 ) |
| 131 |
102 130
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 ) |
| 132 |
|
f1of |
⊢ ( 𝑆 : ( 0 ... 𝑁 ) –1-1-onto→ 𝑇 → 𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) |
| 133 |
131 132
|
syl |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ 𝑇 ) |
| 134 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 135 |
13 134
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 136 |
133 135
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ 𝑇 ) |
| 137 |
101 136
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 138 |
107 137
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ ) |
| 139 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 140 |
13 139
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑁 ) ) |
| 141 |
133 140
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ 𝑇 ) |
| 142 |
101 141
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
| 143 |
107 142
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ ) |
| 144 |
105
|
simprd |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 145 |
124
|
rexrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) ∈ ℝ* ) |
| 146 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 147 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 149 |
146 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 150 |
149
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ* ) |
| 151 |
110 150
|
syl |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ* ) |
| 152 |
143
|
rexrd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝐽 ) ∈ ℝ* ) |
| 153 |
138
|
rexrd |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ* ) |
| 154 |
|
elfzoelz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) |
| 155 |
154
|
zred |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℝ ) |
| 156 |
155
|
ltp1d |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 < ( 𝐽 + 1 ) ) |
| 157 |
13 156
|
syl |
⊢ ( 𝜑 → 𝐽 < ( 𝐽 + 1 ) ) |
| 158 |
|
isoeq5 |
⊢ ( 𝑇 = ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ↔ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ) ) |
| 159 |
10 158
|
ax-mp |
⊢ ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝑇 ) ↔ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
| 160 |
102 159
|
sylib |
⊢ ( 𝜑 → 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
| 161 |
|
isorel |
⊢ ( ( 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐴 , 𝐵 } ∪ ( ran 𝑄 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) ∧ ( 𝐽 ∈ ( 0 ... 𝑁 ) ∧ ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝐽 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 162 |
160 140 135 161
|
syl12anc |
⊢ ( 𝜑 → ( 𝐽 < ( 𝐽 + 1 ) ↔ ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) |
| 163 |
157 162
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 164 |
107 163
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 165 |
145 151 152 153 164
|
ioossioobi |
⊢ ( 𝜒 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝑄 ‘ 𝑘 ) ≤ ( 𝑆 ‘ 𝐽 ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 166 |
144 165
|
mpbid |
⊢ ( 𝜒 → ( ( 𝑄 ‘ 𝑘 ) ≤ ( 𝑆 ‘ 𝐽 ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 167 |
166
|
simpld |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) ≤ ( 𝑆 ‘ 𝐽 ) ) |
| 168 |
124 143 138 167 164
|
lelttrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 169 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 170 |
169
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 171 |
170
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 172 |
105 171
|
syl |
⊢ ( 𝜒 → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 173 |
107 172 28
|
syl2anc |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 174 |
9
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 175 |
172 173 174
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 176 |
175 173
|
eqeltrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 177 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 178 |
105 177
|
syl |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 179 |
176 129 143 138 164 178
|
fourierdlem10 |
⊢ ( 𝜒 → ( ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑆 ‘ 𝐽 ) ∧ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 180 |
179
|
simprd |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 181 |
124 138 129 168 180
|
ltletrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑘 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 182 |
124 129 118 181
|
ltadd2dd |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑘 ) ) < ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 183 |
123
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑘 ) ) = ( 𝑋 + ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) ) |
| 184 |
107 52
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℂ ) |
| 185 |
117
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) ∈ ℂ ) |
| 186 |
184 185
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) = ( 𝑉 ‘ 𝑘 ) ) |
| 187 |
183 186
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) = ( 𝑋 + ( 𝑄 ‘ 𝑘 ) ) ) |
| 188 |
112 126
|
syl |
⊢ ( 𝜒 → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 189 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 190 |
189 127
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 191 |
107 112 190
|
syl2anc |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 192 |
191 118
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 193 |
188 192
|
jca |
⊢ ( 𝜒 → ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) ) |
| 194 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑘 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
| 195 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 196 |
195
|
oveq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 197 |
196
|
eleq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ↔ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) ) |
| 198 |
194 197
|
anbi12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) ↔ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) ) ) |
| 199 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 200 |
199 196
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ↔ ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 201 |
198 200
|
imbi12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑉 ‘ 𝑘 ) − 𝑋 ) ) ↔ ( ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) ) |
| 202 |
201 122
|
vtoclg |
⊢ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 203 |
188 193 202
|
sylc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 204 |
203
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 205 |
191
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 206 |
184 205
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 207 |
204 206
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑖 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 208 |
182 187 207
|
3brtr4d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 209 |
|
eleq1w |
⊢ ( 𝑙 = 𝑖 → ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 210 |
209
|
anbi2d |
⊢ ( 𝑙 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 211 |
|
oveq1 |
⊢ ( 𝑙 = 𝑖 → ( 𝑙 + 1 ) = ( 𝑖 + 1 ) ) |
| 212 |
211
|
fveq2d |
⊢ ( 𝑙 = 𝑖 → ( 𝑉 ‘ ( 𝑙 + 1 ) ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 213 |
212
|
breq2d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 214 |
210 213
|
anbi12d |
⊢ ( 𝑙 = 𝑖 → ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 215 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑉 ‘ 𝑙 ) = ( 𝑉 ‘ 𝑖 ) ) |
| 216 |
215
|
breq2d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) ) |
| 217 |
214 216
|
imbi12d |
⊢ ( 𝑙 = 𝑖 → ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) ) ) |
| 218 |
|
eleq1w |
⊢ ( ℎ = 𝑘 → ( ℎ ∈ ( 0 ..^ 𝑀 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 219 |
218
|
anbi2d |
⊢ ( ℎ = 𝑘 → ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 220 |
219
|
anbi1d |
⊢ ( ℎ = 𝑘 → ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 221 |
|
fveq2 |
⊢ ( ℎ = 𝑘 → ( 𝑉 ‘ ℎ ) = ( 𝑉 ‘ 𝑘 ) ) |
| 222 |
221
|
breq1d |
⊢ ( ℎ = 𝑘 → ( ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) |
| 223 |
220 222
|
anbi12d |
⊢ ( ℎ = 𝑘 → ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) ) |
| 224 |
221
|
breq1d |
⊢ ( ℎ = 𝑘 → ( ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) |
| 225 |
223 224
|
imbi12d |
⊢ ( ℎ = 𝑘 → ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 226 |
|
elfzoelz |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ ∈ ℤ ) |
| 227 |
226
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ℎ ∈ ℤ ) |
| 228 |
|
elfzoelz |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑙 ∈ ℤ ) |
| 229 |
228
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → 𝑙 ∈ ℤ ) |
| 230 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) |
| 231 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 232 |
|
fzofzp1 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → ( 𝑙 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 233 |
232
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑙 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 234 |
231 233
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
| 235 |
234
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
| 236 |
235
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ∈ ℝ ) |
| 237 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 238 |
|
elfzofz |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ ∈ ( 0 ... 𝑀 ) ) |
| 239 |
238
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) → ℎ ∈ ( 0 ... 𝑀 ) ) |
| 240 |
237 239
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ℎ ) ∈ ℝ ) |
| 241 |
240
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ℎ ) ∈ ℝ ) |
| 242 |
228
|
zred |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑙 ∈ ℝ ) |
| 243 |
|
peano2re |
⊢ ( 𝑙 ∈ ℝ → ( 𝑙 + 1 ) ∈ ℝ ) |
| 244 |
242 243
|
syl |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → ( 𝑙 + 1 ) ∈ ℝ ) |
| 245 |
244
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
| 246 |
226
|
zred |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ ∈ ℝ ) |
| 247 |
246
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ℎ ∈ ℝ ) |
| 248 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ¬ ℎ < ( 𝑙 + 1 ) ) |
| 249 |
245 247 248
|
nltled |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑙 + 1 ) ≤ ℎ ) |
| 250 |
228
|
peano2zd |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → ( 𝑙 + 1 ) ∈ ℤ ) |
| 251 |
250
|
ad2antlr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ( 𝑙 + 1 ) ∈ ℤ ) |
| 252 |
226
|
ad2antrr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ℎ ∈ ℤ ) |
| 253 |
|
simpr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ( 𝑙 + 1 ) ≤ ℎ ) |
| 254 |
|
eluz2 |
⊢ ( ℎ ∈ ( ℤ≥ ‘ ( 𝑙 + 1 ) ) ↔ ( ( 𝑙 + 1 ) ∈ ℤ ∧ ℎ ∈ ℤ ∧ ( 𝑙 + 1 ) ≤ ℎ ) ) |
| 255 |
251 252 253 254
|
syl3anbrc |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ℎ ∈ ( ℤ≥ ‘ ( 𝑙 + 1 ) ) ) |
| 256 |
255
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ℎ ∈ ( ℤ≥ ‘ ( 𝑙 + 1 ) ) ) |
| 257 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝜑 ) |
| 258 |
|
0zd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ∈ ℤ ) |
| 259 |
|
elfzoel2 |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 260 |
259
|
ad2antrr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑀 ∈ ℤ ) |
| 261 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → 𝑖 ∈ ℤ ) |
| 262 |
261
|
adantl |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ℤ ) |
| 263 |
|
0red |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ∈ ℝ ) |
| 264 |
261
|
zred |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → 𝑖 ∈ ℝ ) |
| 265 |
264
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ℝ ) |
| 266 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑙 ∈ ℝ ) |
| 267 |
|
elfzole1 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 0 ≤ 𝑙 ) |
| 268 |
267
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ≤ 𝑙 ) |
| 269 |
266 243
|
syl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
| 270 |
266
|
ltp1d |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑙 < ( 𝑙 + 1 ) ) |
| 271 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
| 272 |
271
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
| 273 |
266 269 265 270 272
|
ltletrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑙 < 𝑖 ) |
| 274 |
263 266 265 268 273
|
lelttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 < 𝑖 ) |
| 275 |
263 265 274
|
ltled |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ≤ 𝑖 ) |
| 276 |
275
|
adantll |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 0 ≤ 𝑖 ) |
| 277 |
264
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ℝ ) |
| 278 |
259
|
zred |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 279 |
278
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑀 ∈ ℝ ) |
| 280 |
246
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ℎ ∈ ℝ ) |
| 281 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) → 𝑖 ≤ ℎ ) |
| 282 |
281
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ≤ ℎ ) |
| 283 |
|
elfzolt2 |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ℎ < 𝑀 ) |
| 284 |
283
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ℎ < 𝑀 ) |
| 285 |
277 280 279 282 284
|
lelttrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 < 𝑀 ) |
| 286 |
277 279 285
|
ltled |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ≤ 𝑀 ) |
| 287 |
286
|
adantlr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ≤ 𝑀 ) |
| 288 |
258 260 262 276 287
|
elfzd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 289 |
288
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 290 |
257 289 26
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 291 |
290
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ℎ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 292 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝜑 ) |
| 293 |
|
0zd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ∈ ℤ ) |
| 294 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → 𝑖 ∈ ℤ ) |
| 295 |
294
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 296 |
|
0red |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ∈ ℝ ) |
| 297 |
295
|
zred |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 298 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑙 ∈ ℝ ) |
| 299 |
267
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ≤ 𝑙 ) |
| 300 |
298 243
|
syl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ℝ ) |
| 301 |
298
|
ltp1d |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑙 < ( 𝑙 + 1 ) ) |
| 302 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
| 303 |
302
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑙 + 1 ) ≤ 𝑖 ) |
| 304 |
298 300 297 301 303
|
ltletrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑙 < 𝑖 ) |
| 305 |
296 298 297 299 304
|
lelttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 < 𝑖 ) |
| 306 |
296 297 305
|
ltled |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 0 ≤ 𝑖 ) |
| 307 |
|
eluz2 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 0 ≤ 𝑖 ) ) |
| 308 |
293 295 306 307
|
syl3anbrc |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 309 |
308
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 310 |
|
elfzoel2 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 311 |
310
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 312 |
294
|
zred |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → 𝑖 ∈ ℝ ) |
| 313 |
312
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 314 |
|
peano2rem |
⊢ ( ℎ ∈ ℝ → ( ℎ − 1 ) ∈ ℝ ) |
| 315 |
246 314
|
syl |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ( ℎ − 1 ) ∈ ℝ ) |
| 316 |
315
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( ℎ − 1 ) ∈ ℝ ) |
| 317 |
278
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 318 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) → 𝑖 ≤ ( ℎ − 1 ) ) |
| 319 |
318
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ≤ ( ℎ − 1 ) ) |
| 320 |
246
|
ltm1d |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ( ℎ − 1 ) < ℎ ) |
| 321 |
315 246 278 320 283
|
lttrd |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → ( ℎ − 1 ) < 𝑀 ) |
| 322 |
321
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( ℎ − 1 ) < 𝑀 ) |
| 323 |
313 316 317 319 322
|
lelttrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 324 |
323
|
adantll |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 325 |
324
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 326 |
|
elfzo2 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑖 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) |
| 327 |
309 311 325 326
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 328 |
169 26
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 329 |
47
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 330 |
329
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 331 |
328 190 330
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 332 |
292 327 331
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 333 |
332
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) ∧ 𝑖 ∈ ( ( 𝑙 + 1 ) ... ( ℎ − 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 334 |
256 291 333
|
monoord |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑙 + 1 ) ≤ ℎ ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ≤ ( 𝑉 ‘ ℎ ) ) |
| 335 |
249 334
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ( 𝑉 ‘ ( 𝑙 + 1 ) ) ≤ ( 𝑉 ‘ ℎ ) ) |
| 336 |
236 241 335
|
lensymd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ¬ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) |
| 337 |
336
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ ¬ ℎ < ( 𝑙 + 1 ) ) → ¬ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) |
| 338 |
230 337
|
condan |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ℎ < ( 𝑙 + 1 ) ) |
| 339 |
|
zleltp1 |
⊢ ( ( ℎ ∈ ℤ ∧ 𝑙 ∈ ℤ ) → ( ℎ ≤ 𝑙 ↔ ℎ < ( 𝑙 + 1 ) ) ) |
| 340 |
227 229 339
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( ℎ ≤ 𝑙 ↔ ℎ < ( 𝑙 + 1 ) ) ) |
| 341 |
338 340
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ℎ ≤ 𝑙 ) |
| 342 |
|
eluz2 |
⊢ ( 𝑙 ∈ ( ℤ≥ ‘ ℎ ) ↔ ( ℎ ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ ℎ ≤ 𝑙 ) ) |
| 343 |
227 229 341 342
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → 𝑙 ∈ ( ℤ≥ ‘ ℎ ) ) |
| 344 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 345 |
|
0zd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ∈ ℤ ) |
| 346 |
259
|
ad2antrr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑀 ∈ ℤ ) |
| 347 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → 𝑖 ∈ ℤ ) |
| 348 |
347
|
adantl |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ℤ ) |
| 349 |
|
0red |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ∈ ℝ ) |
| 350 |
246
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ℎ ∈ ℝ ) |
| 351 |
347
|
zred |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → 𝑖 ∈ ℝ ) |
| 352 |
351
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ℝ ) |
| 353 |
|
elfzole1 |
⊢ ( ℎ ∈ ( 0 ..^ 𝑀 ) → 0 ≤ ℎ ) |
| 354 |
353
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ≤ ℎ ) |
| 355 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → ℎ ≤ 𝑖 ) |
| 356 |
355
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ℎ ≤ 𝑖 ) |
| 357 |
349 350 352 354 356
|
letrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ≤ 𝑖 ) |
| 358 |
357
|
adantlr |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 0 ≤ 𝑖 ) |
| 359 |
351
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ℝ ) |
| 360 |
310
|
zred |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 361 |
360
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑀 ∈ ℝ ) |
| 362 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑙 ∈ ℝ ) |
| 363 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ℎ ... 𝑙 ) → 𝑖 ≤ 𝑙 ) |
| 364 |
363
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ≤ 𝑙 ) |
| 365 |
|
elfzolt2 |
⊢ ( 𝑙 ∈ ( 0 ..^ 𝑀 ) → 𝑙 < 𝑀 ) |
| 366 |
365
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑙 < 𝑀 ) |
| 367 |
359 362 361 364 366
|
lelttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 < 𝑀 ) |
| 368 |
359 361 367
|
ltled |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ≤ 𝑀 ) |
| 369 |
368
|
adantll |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ≤ 𝑀 ) |
| 370 |
345 346 348 358 369
|
elfzd |
⊢ ( ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 371 |
370
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 372 |
344 371
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 373 |
372
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... 𝑙 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 374 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝜑 ) |
| 375 |
|
0zd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ∈ ℤ ) |
| 376 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → 𝑖 ∈ ℤ ) |
| 377 |
376
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 378 |
|
0red |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ∈ ℝ ) |
| 379 |
246
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ℎ ∈ ℝ ) |
| 380 |
377
|
zred |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 381 |
353
|
adantr |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ≤ ℎ ) |
| 382 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → ℎ ≤ 𝑖 ) |
| 383 |
382
|
adantl |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ℎ ≤ 𝑖 ) |
| 384 |
378 379 380 381 383
|
letrd |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 0 ≤ 𝑖 ) |
| 385 |
375 377 384 307
|
syl3anbrc |
⊢ ( ( ℎ ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 386 |
385
|
adantll |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 387 |
386
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 388 |
310
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 389 |
376
|
zred |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → 𝑖 ∈ ℝ ) |
| 390 |
389
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 391 |
242
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑙 ∈ ℝ ) |
| 392 |
360
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 393 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) → 𝑖 ≤ ( 𝑙 − 1 ) ) |
| 394 |
393
|
adantl |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ≤ ( 𝑙 − 1 ) ) |
| 395 |
|
zltlem1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑙 ∈ ℤ ) → ( 𝑖 < 𝑙 ↔ 𝑖 ≤ ( 𝑙 − 1 ) ) ) |
| 396 |
376 228 395
|
syl2anr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ( 𝑖 < 𝑙 ↔ 𝑖 ≤ ( 𝑙 − 1 ) ) ) |
| 397 |
394 396
|
mpbird |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑙 ) |
| 398 |
365
|
adantr |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑙 < 𝑀 ) |
| 399 |
390 391 392 397 398
|
lttrd |
⊢ ( ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 400 |
399
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 401 |
400
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 402 |
387 388 401 326
|
syl3anbrc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 403 |
374 402 331
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ∧ 𝑖 ∈ ( ℎ ... ( 𝑙 − 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 404 |
343 373 403
|
monoord |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ) |
| 405 |
225 404
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑙 ) ) |
| 406 |
217 405
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑘 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) |
| 407 |
110 112 208 406
|
syl21anc |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ) |
| 408 |
107 112
|
jca |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 409 |
110 149
|
syl |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 410 |
179
|
simpld |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑆 ‘ 𝐽 ) ) |
| 411 |
176 143 138 410 164
|
lelttrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) |
| 412 |
166
|
simprd |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ≤ ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
| 413 |
176 138 409 411 412
|
ltletrd |
⊢ ( 𝜒 → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
| 414 |
176 409 118 413
|
ltadd2dd |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) < ( 𝑋 + ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 415 |
175
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) = ( 𝑋 + ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 416 |
107 172 26
|
syl2anc |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 417 |
416
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) ∈ ℂ ) |
| 418 |
184 417
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑉 ‘ 𝑖 ) ) |
| 419 |
415 418
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) = ( 𝑋 + ( 𝑄 ‘ 𝑖 ) ) ) |
| 420 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 421 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
| 422 |
421
|
oveq1d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
| 423 |
422
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 = ( 𝑘 + 1 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
| 424 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 425 |
424 148
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 426 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 427 |
425 426
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 428 |
420 423 148 427
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
| 429 |
107 109 428
|
syl2anc |
⊢ ( 𝜒 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) |
| 430 |
429
|
oveq2d |
⊢ ( 𝜒 → ( 𝑋 + ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑋 + ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) ) |
| 431 |
110 425
|
syl |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 432 |
431
|
recnd |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 433 |
184 432
|
pncan3d |
⊢ ( 𝜒 → ( 𝑋 + ( ( 𝑉 ‘ ( 𝑘 + 1 ) ) − 𝑋 ) ) = ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
| 434 |
430 433
|
eqtr2d |
⊢ ( 𝜒 → ( 𝑉 ‘ ( 𝑘 + 1 ) ) = ( 𝑋 + ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 435 |
414 419 434
|
3brtr4d |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
| 436 |
|
eleq1w |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 437 |
436
|
anbi2d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 438 |
|
oveq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 + 1 ) = ( 𝑘 + 1 ) ) |
| 439 |
438
|
fveq2d |
⊢ ( 𝑙 = 𝑘 → ( 𝑉 ‘ ( 𝑙 + 1 ) ) = ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) |
| 440 |
439
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) ) |
| 441 |
437 440
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 442 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑉 ‘ 𝑙 ) = ( 𝑉 ‘ 𝑘 ) ) |
| 443 |
442
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) ) |
| 444 |
441 443
|
imbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 445 |
|
eleq1w |
⊢ ( ℎ = 𝑖 → ( ℎ ∈ ( 0 ..^ 𝑀 ) ↔ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 446 |
445
|
anbi2d |
⊢ ( ℎ = 𝑖 → ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 447 |
446
|
anbi1d |
⊢ ( ℎ = 𝑖 → ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 448 |
|
fveq2 |
⊢ ( ℎ = 𝑖 → ( 𝑉 ‘ ℎ ) = ( 𝑉 ‘ 𝑖 ) ) |
| 449 |
448
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ↔ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) |
| 450 |
447 449
|
anbi12d |
⊢ ( ℎ = 𝑖 → ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) ) ) |
| 451 |
448
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ↔ ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) |
| 452 |
450 451
|
imbi12d |
⊢ ( ℎ = 𝑖 → ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ ℎ ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ ℎ ) ≤ ( 𝑉 ‘ 𝑙 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 453 |
452 404
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑙 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑙 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑙 ) ) |
| 454 |
444 453
|
chvarvv |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑘 + 1 ) ) ) → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) |
| 455 |
408 109 435 454
|
syl21anc |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) |
| 456 |
117 416
|
letri3d |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ↔ ( ( 𝑉 ‘ 𝑘 ) ≤ ( 𝑉 ‘ 𝑖 ) ∧ ( 𝑉 ‘ 𝑖 ) ≤ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 457 |
407 455 456
|
mpbir2and |
⊢ ( 𝜒 → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ) |
| 458 |
2 3 4
|
fourierdlem34 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) –1-1→ ℝ ) |
| 459 |
107 458
|
syl |
⊢ ( 𝜒 → 𝑉 : ( 0 ... 𝑀 ) –1-1→ ℝ ) |
| 460 |
|
f1fveq |
⊢ ( ( 𝑉 : ( 0 ... 𝑀 ) –1-1→ ℝ ∧ ( 𝑘 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) ) → ( ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ↔ 𝑘 = 𝑖 ) ) |
| 461 |
459 115 172 460
|
syl12anc |
⊢ ( 𝜒 → ( ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑖 ) ↔ 𝑘 = 𝑖 ) ) |
| 462 |
457 461
|
mpbid |
⊢ ( 𝜒 → 𝑘 = 𝑖 ) |
| 463 |
15 462
|
sylbir |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 = 𝑖 ) |
| 464 |
463
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) → 𝑘 = 𝑖 ) ) |
| 465 |
|
simpl |
⊢ ( ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 466 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 467 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 + 1 ) = ( 𝑖 + 1 ) ) |
| 468 |
467
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 469 |
466 468
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 470 |
469
|
eqcomd |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 471 |
470
|
adantl |
⊢ ( ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 472 |
465 471
|
sseqtrd |
⊢ ( ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑘 = 𝑖 ) → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 473 |
472
|
ex |
⊢ ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑘 = 𝑖 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 474 |
473
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑘 = 𝑖 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 475 |
464 474
|
impbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
| 476 |
475
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
| 477 |
476
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) ) |
| 478 |
477
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) ) |
| 479 |
104 478
|
mpd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
| 480 |
|
reu6 |
⊢ ( ∃! 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ↔ 𝑘 = 𝑖 ) ) |
| 481 |
479 480
|
sylibr |
⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 482 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 483 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) ) |
| 484 |
483
|
fveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) |
| 485 |
482 484
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 486 |
485
|
sseq2d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 487 |
486
|
cbvreuvw |
⊢ ( ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃! 𝑘 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑘 ) (,) ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) ) |
| 488 |
481 487
|
sylibr |
⊢ ( 𝜑 → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 489 |
|
riotacl |
⊢ ( ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( 0 ..^ 𝑀 ) ) |
| 490 |
488 489
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( 0 ..^ 𝑀 ) ) |
| 491 |
14 490
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ ( 0 ..^ 𝑀 ) ) |
| 492 |
14
|
eqcomi |
⊢ ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 |
| 493 |
492
|
a1i |
⊢ ( 𝜑 → ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 ) |
| 494 |
|
fveq2 |
⊢ ( 𝑖 = 𝑈 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑈 ) ) |
| 495 |
|
oveq1 |
⊢ ( 𝑖 = 𝑈 → ( 𝑖 + 1 ) = ( 𝑈 + 1 ) ) |
| 496 |
495
|
fveq2d |
⊢ ( 𝑖 = 𝑈 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) |
| 497 |
494 496
|
oveq12d |
⊢ ( 𝑖 = 𝑈 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
| 498 |
497
|
sseq2d |
⊢ ( 𝑖 = 𝑈 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) ) |
| 499 |
498
|
riota2 |
⊢ ( ( 𝑈 ∈ ( 0 ..^ 𝑀 ) ∧ ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ↔ ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 ) ) |
| 500 |
491 488 499
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ↔ ( ℩ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = 𝑈 ) ) |
| 501 |
493 500
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) |
| 502 |
491 501
|
jca |
⊢ ( 𝜑 → ( 𝑈 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑈 ) (,) ( 𝑄 ‘ ( 𝑈 + 1 ) ) ) ) ) |