Metamath Proof Explorer


Theorem fourierdlem49

Description: The given periodic function F has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem49.a φ A
fourierdlem49.b φ B
fourierdlem49.altb φ A < B
fourierdlem49.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem49.t T = B A
fourierdlem49.m φ M
fourierdlem49.q φ Q P M
fourierdlem49.d φ D
fourierdlem49.f φ F : D
fourierdlem49.dper φ x D k x + k T D
fourierdlem49.per φ x D k F x + k T = F x
fourierdlem49.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem49.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem49.x φ X
fourierdlem49.z Z = x B x T T
fourierdlem49.e E = x x + Z x
Assertion fourierdlem49 φ F −∞ X lim X

Proof

Step Hyp Ref Expression
1 fourierdlem49.a φ A
2 fourierdlem49.b φ B
3 fourierdlem49.altb φ A < B
4 fourierdlem49.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
5 fourierdlem49.t T = B A
6 fourierdlem49.m φ M
7 fourierdlem49.q φ Q P M
8 fourierdlem49.d φ D
9 fourierdlem49.f φ F : D
10 fourierdlem49.dper φ x D k x + k T D
11 fourierdlem49.per φ x D k F x + k T = F x
12 fourierdlem49.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
13 fourierdlem49.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
14 fourierdlem49.x φ X
15 fourierdlem49.z Z = x B x T T
16 fourierdlem49.e E = x x + Z x
17 ovex B x T T V
18 15 fvmpt2 x B x T T V Z x = B x T T
19 17 18 mpan2 x Z x = B x T T
20 19 oveq2d x x + Z x = x + B x T T
21 20 mpteq2ia x x + Z x = x x + B x T T
22 16 21 eqtri E = x x + B x T T
23 1 2 3 5 22 fourierdlem4 φ E : A B
24 23 14 ffvelrnd φ E X A B
25 simpr φ E X A B E X ran Q E X ran Q
26 4 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
27 6 26 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
28 7 27 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
29 28 simpld φ Q 0 M
30 elmapi Q 0 M Q : 0 M
31 29 30 syl φ Q : 0 M
32 ffn Q : 0 M Q Fn 0 M
33 31 32 syl φ Q Fn 0 M
34 33 ad2antrr φ E X A B E X ran Q Q Fn 0 M
35 fvelrnb Q Fn 0 M E X ran Q j 0 M Q j = E X
36 34 35 syl φ E X A B E X ran Q E X ran Q j 0 M Q j = E X
37 25 36 mpbid φ E X A B E X ran Q j 0 M Q j = E X
38 1zzd φ E X A B j 0 M Q j = E X 1
39 elfzelz j 0 M j
40 39 ad2antlr φ E X A B j 0 M Q j = E X j
41 1e0p1 1 = 0 + 1
42 41 a1i φ E X A B j 0 M Q j = E X 1 = 0 + 1
43 40 zred φ E X A B j 0 M Q j = E X j
44 elfzle1 j 0 M 0 j
45 44 ad2antlr φ E X A B j 0 M Q j = E X 0 j
46 id Q j = E X Q j = E X
47 46 eqcomd Q j = E X E X = Q j
48 47 ad2antlr φ Q j = E X j = 0 E X = Q j
49 fveq2 j = 0 Q j = Q 0
50 49 adantl φ Q j = E X j = 0 Q j = Q 0
51 28 simprld φ Q 0 = A Q M = B
52 51 simpld φ Q 0 = A
53 52 ad2antrr φ Q j = E X j = 0 Q 0 = A
54 48 50 53 3eqtrd φ Q j = E X j = 0 E X = A
55 54 adantllr φ E X A B Q j = E X j = 0 E X = A
56 55 adantllr φ E X A B j 0 M Q j = E X j = 0 E X = A
57 1 adantr φ E X A B A
58 1 rexrd φ A *
59 58 adantr φ E X A B A *
60 2 rexrd φ B *
61 60 adantr φ E X A B B *
62 simpr φ E X A B E X A B
63 iocgtlb A * B * E X A B A < E X
64 59 61 62 63 syl3anc φ E X A B A < E X
65 57 64 gtned φ E X A B E X A
66 65 neneqd φ E X A B ¬ E X = A
67 66 ad3antrrr φ E X A B j 0 M Q j = E X j = 0 ¬ E X = A
68 56 67 pm2.65da φ E X A B j 0 M Q j = E X ¬ j = 0
69 68 neqned φ E X A B j 0 M Q j = E X j 0
70 43 45 69 ne0gt0d φ E X A B j 0 M Q j = E X 0 < j
71 0zd φ E X A B j 0 M Q j = E X 0
72 zltp1le 0 j 0 < j 0 + 1 j
73 71 40 72 syl2anc φ E X A B j 0 M Q j = E X 0 < j 0 + 1 j
74 70 73 mpbid φ E X A B j 0 M Q j = E X 0 + 1 j
75 42 74 eqbrtrd φ E X A B j 0 M Q j = E X 1 j
76 eluz2 j 1 1 j 1 j
77 38 40 75 76 syl3anbrc φ E X A B j 0 M Q j = E X j 1
78 nnuz = 1
79 77 78 eleqtrrdi φ E X A B j 0 M Q j = E X j
80 nnm1nn0 j j 1 0
81 79 80 syl φ E X A B j 0 M Q j = E X j 1 0
82 nn0uz 0 = 0
83 82 a1i φ E X A B j 0 M Q j = E X 0 = 0
84 81 83 eleqtrd φ E X A B j 0 M Q j = E X j 1 0
85 6 nnzd φ M
86 85 ad3antrrr φ E X A B j 0 M Q j = E X M
87 peano2zm j j 1
88 39 87 syl j 0 M j 1
89 88 zred j 0 M j 1
90 39 zred j 0 M j
91 elfzel2 j 0 M M
92 91 zred j 0 M M
93 90 ltm1d j 0 M j 1 < j
94 elfzle2 j 0 M j M
95 89 90 92 93 94 ltletrd j 0 M j 1 < M
96 95 ad2antlr φ E X A B j 0 M Q j = E X j 1 < M
97 elfzo2 j 1 0 ..^ M j 1 0 M j 1 < M
98 84 86 96 97 syl3anbrc φ E X A B j 0 M Q j = E X j 1 0 ..^ M
99 31 ad3antrrr φ E X A B j 0 M Q j = E X Q : 0 M
100 40 87 syl φ E X A B j 0 M Q j = E X j 1
101 81 nn0ge0d φ E X A B j 0 M Q j = E X 0 j 1
102 89 92 95 ltled j 0 M j 1 M
103 102 ad2antlr φ E X A B j 0 M Q j = E X j 1 M
104 71 86 100 101 103 elfzd φ E X A B j 0 M Q j = E X j 1 0 M
105 99 104 ffvelrnd φ E X A B j 0 M Q j = E X Q j 1
106 105 rexrd φ E X A B j 0 M Q j = E X Q j 1 *
107 31 ffvelrnda φ j 0 M Q j
108 107 rexrd φ j 0 M Q j *
109 108 adantlr φ E X A B j 0 M Q j *
110 109 adantr φ E X A B j 0 M Q j = E X Q j *
111 iocssre A * B A B
112 58 2 111 syl2anc φ A B
113 112 sselda φ E X A B E X
114 113 rexrd φ E X A B E X *
115 114 ad2antrr φ E X A B j 0 M Q j = E X E X *
116 simplll φ E X A B j 0 M Q j = E X φ
117 ovex j 1 V
118 eleq1 i = j 1 i 0 ..^ M j 1 0 ..^ M
119 118 anbi2d i = j 1 φ i 0 ..^ M φ j 1 0 ..^ M
120 fveq2 i = j 1 Q i = Q j 1
121 oveq1 i = j 1 i + 1 = j - 1 + 1
122 121 fveq2d i = j 1 Q i + 1 = Q j - 1 + 1
123 120 122 breq12d i = j 1 Q i < Q i + 1 Q j 1 < Q j - 1 + 1
124 119 123 imbi12d i = j 1 φ i 0 ..^ M Q i < Q i + 1 φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
125 28 simprrd φ i 0 ..^ M Q i < Q i + 1
126 125 r19.21bi φ i 0 ..^ M Q i < Q i + 1
127 117 124 126 vtocl φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
128 116 98 127 syl2anc φ E X A B j 0 M Q j = E X Q j 1 < Q j - 1 + 1
129 39 zcnd j 0 M j
130 1cnd j 0 M 1
131 129 130 npcand j 0 M j - 1 + 1 = j
132 131 eqcomd j 0 M j = j - 1 + 1
133 132 fveq2d j 0 M Q j = Q j - 1 + 1
134 133 eqcomd j 0 M Q j - 1 + 1 = Q j
135 134 ad2antlr φ E X A B j 0 M Q j = E X Q j - 1 + 1 = Q j
136 128 135 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < Q j
137 simpr φ E X A B j 0 M Q j = E X Q j = E X
138 136 137 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < E X
139 112 24 sseldd φ E X
140 139 leidd φ E X E X
141 140 ad2antrr φ j 0 M Q j = E X E X E X
142 47 adantl φ j 0 M Q j = E X E X = Q j
143 141 142 breqtrd φ j 0 M Q j = E X E X Q j
144 143 adantllr φ E X A B j 0 M Q j = E X E X Q j
145 106 110 115 138 144 eliocd φ E X A B j 0 M Q j = E X E X Q j 1 Q j
146 133 oveq2d j 0 M Q j 1 Q j = Q j 1 Q j - 1 + 1
147 146 ad2antlr φ E X A B j 0 M Q j = E X Q j 1 Q j = Q j 1 Q j - 1 + 1
148 145 147 eleqtrd φ E X A B j 0 M Q j = E X E X Q j 1 Q j - 1 + 1
149 120 122 oveq12d i = j 1 Q i Q i + 1 = Q j 1 Q j - 1 + 1
150 149 eleq2d i = j 1 E X Q i Q i + 1 E X Q j 1 Q j - 1 + 1
151 150 rspcev j 1 0 ..^ M E X Q j 1 Q j - 1 + 1 i 0 ..^ M E X Q i Q i + 1
152 98 148 151 syl2anc φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
153 152 ex φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
154 153 adantlr φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
155 154 rexlimdva φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
156 37 155 mpd φ E X A B E X ran Q i 0 ..^ M E X Q i Q i + 1
157 6 ad2antrr φ E X A B ¬ E X ran Q M
158 31 ad2antrr φ E X A B ¬ E X ran Q Q : 0 M
159 iocssicc A B A B
160 52 eqcomd φ A = Q 0
161 51 simprd φ Q M = B
162 161 eqcomd φ B = Q M
163 160 162 oveq12d φ A B = Q 0 Q M
164 159 163 sseqtrid φ A B Q 0 Q M
165 164 sselda φ E X A B E X Q 0 Q M
166 165 adantr φ E X A B ¬ E X ran Q E X Q 0 Q M
167 simpr φ E X A B ¬ E X ran Q ¬ E X ran Q
168 fveq2 k = j Q k = Q j
169 168 breq1d k = j Q k < E X Q j < E X
170 169 cbvrabv k 0 ..^ M | Q k < E X = j 0 ..^ M | Q j < E X
171 170 supeq1i sup k 0 ..^ M | Q k < E X < = sup j 0 ..^ M | Q j < E X <
172 157 158 166 167 171 fourierdlem25 φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
173 ioossioc Q i Q i + 1 Q i Q i + 1
174 173 sseli E X Q i Q i + 1 E X Q i Q i + 1
175 174 a1i φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 E X Q i Q i + 1
176 175 reximdva φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 i 0 ..^ M E X Q i Q i + 1
177 172 176 mpd φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
178 156 177 pm2.61dan φ E X A B i 0 ..^ M E X Q i Q i + 1
179 24 178 mpdan φ i 0 ..^ M E X Q i Q i + 1
180 frel F : D Rel F
181 9 180 syl φ Rel F
182 resindm Rel F F −∞ E X dom F = F −∞ E X
183 182 eqcomd Rel F F −∞ E X = F −∞ E X dom F
184 181 183 syl φ F −∞ E X = F −∞ E X dom F
185 fdm F : D dom F = D
186 9 185 syl φ dom F = D
187 186 ineq2d φ −∞ E X dom F = −∞ E X D
188 187 reseq2d φ F −∞ E X dom F = F −∞ E X D
189 184 188 eqtrd φ F −∞ E X = F −∞ E X D
190 189 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X = F −∞ E X D
191 190 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X = F −∞ E X D lim E X
192 ax-resscn
193 192 a1i φ
194 9 193 fssd φ F : D
195 194 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 F : D
196 inss2 −∞ E X D D
197 196 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D D
198 195 197 fssresd φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D : −∞ E X D
199 mnfxr −∞ *
200 199 a1i φ i 0 ..^ M −∞ *
201 31 adantr φ i 0 ..^ M Q : 0 M
202 elfzofz i 0 ..^ M i 0 M
203 202 adantl φ i 0 ..^ M i 0 M
204 201 203 ffvelrnd φ i 0 ..^ M Q i
205 204 rexrd φ i 0 ..^ M Q i *
206 204 mnfltd φ i 0 ..^ M −∞ < Q i
207 200 205 206 xrltled φ i 0 ..^ M −∞ Q i
208 iooss1 −∞ * −∞ Q i Q i E X −∞ E X
209 199 207 208 sylancr φ i 0 ..^ M Q i E X −∞ E X
210 209 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i E X −∞ E X
211 fzofzp1 i 0 ..^ M i + 1 0 M
212 211 adantl φ i 0 ..^ M i + 1 0 M
213 201 212 ffvelrnd φ i 0 ..^ M Q i + 1
214 213 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i + 1
215 214 rexrd φ i 0 ..^ M E X Q i Q i + 1 Q i + 1 *
216 204 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i
217 216 rexrd φ i 0 ..^ M E X Q i Q i + 1 Q i *
218 simp3 φ i 0 ..^ M E X Q i Q i + 1 E X Q i Q i + 1
219 iocleub Q i * Q i + 1 * E X Q i Q i + 1 E X Q i + 1
220 217 215 218 219 syl3anc φ i 0 ..^ M E X Q i Q i + 1 E X Q i + 1
221 iooss2 Q i + 1 * E X Q i + 1 Q i E X Q i Q i + 1
222 215 220 221 syl2anc φ i 0 ..^ M E X Q i Q i + 1 Q i E X Q i Q i + 1
223 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
224 fdm F Q i Q i + 1 : Q i Q i + 1 dom F Q i Q i + 1 = Q i Q i + 1
225 12 223 224 3syl φ i 0 ..^ M dom F Q i Q i + 1 = Q i Q i + 1
226 ssdmres Q i Q i + 1 dom F dom F Q i Q i + 1 = Q i Q i + 1
227 225 226 sylibr φ i 0 ..^ M Q i Q i + 1 dom F
228 186 adantr φ i 0 ..^ M dom F = D
229 227 228 sseqtrd φ i 0 ..^ M Q i Q i + 1 D
230 229 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i Q i + 1 D
231 222 230 sstrd φ i 0 ..^ M E X Q i Q i + 1 Q i E X D
232 210 231 ssind φ i 0 ..^ M E X Q i Q i + 1 Q i E X −∞ E X D
233 8 193 sstrd φ D
234 233 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 D
235 196 234 sstrid φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D
236 eqid TopOpen fld = TopOpen fld
237 eqid TopOpen fld 𝑡 −∞ E X D E X = TopOpen fld 𝑡 −∞ E X D E X
238 139 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 E X
239 238 rexrd φ i 0 ..^ M E X Q i Q i + 1 E X *
240 iocgtlb Q i * Q i + 1 * E X Q i Q i + 1 Q i < E X
241 217 215 218 240 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i < E X
242 238 leidd φ i 0 ..^ M E X Q i Q i + 1 E X E X
243 217 239 239 241 242 eliocd φ i 0 ..^ M E X Q i Q i + 1 E X Q i E X
244 ioounsn Q i * E X * Q i < E X Q i E X E X = Q i E X
245 217 239 241 244 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i E X E X = Q i E X
246 245 fveq2d φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ E X D E X Q i E X E X = int TopOpen fld 𝑡 −∞ E X D E X Q i E X
247 236 cnfldtop TopOpen fld Top
248 ovex −∞ E X V
249 248 inex1 −∞ E X D V
250 snex E X V
251 249 250 unex −∞ E X D E X V
252 resttop TopOpen fld Top −∞ E X D E X V TopOpen fld 𝑡 −∞ E X D E X Top
253 247 251 252 mp2an TopOpen fld 𝑡 −∞ E X D E X Top
254 retop topGen ran . Top
255 254 a1i φ i 0 ..^ M E X Q i Q i + 1 topGen ran . Top
256 251 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D E X V
257 iooretop Q i +∞ topGen ran .
258 257 a1i φ i 0 ..^ M E X Q i Q i + 1 Q i +∞ topGen ran .
259 elrestr topGen ran . Top −∞ E X D E X V Q i +∞ topGen ran . Q i +∞ −∞ E X D E X topGen ran . 𝑡 −∞ E X D E X
260 255 256 258 259 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i +∞ −∞ E X D E X topGen ran . 𝑡 −∞ E X D E X
261 simpr φ i 0 ..^ M E X Q i Q i + 1 x = E X x = E X
262 pnfxr +∞ *
263 262 a1i φ i 0 ..^ M E X Q i Q i + 1 +∞ *
264 238 ltpnfd φ i 0 ..^ M E X Q i Q i + 1 E X < +∞
265 217 263 238 241 264 eliood φ i 0 ..^ M E X Q i Q i + 1 E X Q i +∞
266 snidg E X E X E X
267 elun2 E X E X E X −∞ E X D E X
268 266 267 syl E X E X −∞ E X D E X
269 139 268 syl φ E X −∞ E X D E X
270 269 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 E X −∞ E X D E X
271 265 270 elind φ i 0 ..^ M E X Q i Q i + 1 E X Q i +∞ −∞ E X D E X
272 271 adantr φ i 0 ..^ M E X Q i Q i + 1 x = E X E X Q i +∞ −∞ E X D E X
273 261 272 eqeltrd φ i 0 ..^ M E X Q i Q i + 1 x = E X x Q i +∞ −∞ E X D E X
274 273 adantlr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x = E X x Q i +∞ −∞ E X D E X
275 217 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X Q i *
276 262 a1i φ i 0 ..^ M E X Q i Q i + 1 x Q i E X +∞ *
277 205 adantr φ i 0 ..^ M x Q i E X Q i *
278 139 adantr φ i 0 ..^ M E X
279 278 adantr φ i 0 ..^ M x Q i E X E X
280 iocssre Q i * E X Q i E X
281 277 279 280 syl2anc φ i 0 ..^ M x Q i E X Q i E X
282 simpr φ i 0 ..^ M x Q i E X x Q i E X
283 281 282 sseldd φ i 0 ..^ M x Q i E X x
284 283 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x
285 279 rexrd φ i 0 ..^ M x Q i E X E X *
286 iocgtlb Q i * E X * x Q i E X Q i < x
287 277 285 282 286 syl3anc φ i 0 ..^ M x Q i E X Q i < x
288 287 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X Q i < x
289 284 ltpnfd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x < +∞
290 275 276 284 288 289 eliood φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x Q i +∞
291 290 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x Q i +∞
292 199 a1i φ i 0 ..^ M x Q i E X ¬ x = E X −∞ *
293 285 adantr φ i 0 ..^ M x Q i E X ¬ x = E X E X *
294 283 adantr φ i 0 ..^ M x Q i E X ¬ x = E X x
295 294 mnfltd φ i 0 ..^ M x Q i E X ¬ x = E X −∞ < x
296 139 ad3antrrr φ i 0 ..^ M x Q i E X ¬ x = E X E X
297 iocleub Q i * E X * x Q i E X x E X
298 277 285 282 297 syl3anc φ i 0 ..^ M x Q i E X x E X
299 298 adantr φ i 0 ..^ M x Q i E X ¬ x = E X x E X
300 neqne ¬ x = E X x E X
301 300 necomd ¬ x = E X E X x
302 301 adantl φ i 0 ..^ M x Q i E X ¬ x = E X E X x
303 294 296 299 302 leneltd φ i 0 ..^ M x Q i E X ¬ x = E X x < E X
304 292 293 294 295 303 eliood φ i 0 ..^ M x Q i E X ¬ x = E X x −∞ E X
305 304 3adantll3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x −∞ E X
306 230 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i Q i + 1 D
307 275 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i *
308 215 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i + 1 *
309 284 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x
310 288 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i < x
311 238 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X E X
312 214 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i + 1
313 303 3adantll3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x < E X
314 220 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X E X Q i + 1
315 309 311 312 313 314 ltletrd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x < Q i + 1
316 307 308 309 310 315 eliood φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x Q i Q i + 1
317 306 316 sseldd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x D
318 305 317 elind φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x −∞ E X D
319 elun1 x −∞ E X D x −∞ E X D E X
320 318 319 syl φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x −∞ E X D E X
321 291 320 elind φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x Q i +∞ −∞ E X D E X
322 274 321 pm2.61dan φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x Q i +∞ −∞ E X D E X
323 217 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X Q i *
324 239 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X E X *
325 elinel1 x Q i +∞ −∞ E X D E X x Q i +∞
326 elioore x Q i +∞ x
327 326 rexrd x Q i +∞ x *
328 325 327 syl x Q i +∞ −∞ E X D E X x *
329 328 adantl φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X x *
330 205 adantr φ i 0 ..^ M x Q i +∞ −∞ E X D E X Q i *
331 262 a1i φ i 0 ..^ M x Q i +∞ −∞ E X D E X +∞ *
332 325 adantl φ i 0 ..^ M x Q i +∞ −∞ E X D E X x Q i +∞
333 ioogtlb Q i * +∞ * x Q i +∞ Q i < x
334 330 331 332 333 syl3anc φ i 0 ..^ M x Q i +∞ −∞ E X D E X Q i < x
335 334 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X Q i < x
336 elinel2 x Q i +∞ −∞ E X D E X x −∞ E X D E X
337 elsni x E X x = E X
338 337 adantl φ x E X x = E X
339 140 adantr φ x E X E X E X
340 338 339 eqbrtrd φ x E X x E X
341 340 adantlr φ x −∞ E X D E X x E X x E X
342 simpll φ x −∞ E X D E X ¬ x E X φ
343 elunnel2 x −∞ E X D E X ¬ x E X x −∞ E X D
344 343 adantll φ x −∞ E X D E X ¬ x E X x −∞ E X D
345 elinel1 x −∞ E X D x −∞ E X
346 elioore x −∞ E X x
347 346 adantl φ x −∞ E X x
348 139 adantr φ x −∞ E X E X
349 199 a1i φ x −∞ E X −∞ *
350 348 rexrd φ x −∞ E X E X *
351 simpr φ x −∞ E X x −∞ E X
352 iooltub −∞ * E X * x −∞ E X x < E X
353 349 350 351 352 syl3anc φ x −∞ E X x < E X
354 347 348 353 ltled φ x −∞ E X x E X
355 345 354 sylan2 φ x −∞ E X D x E X
356 342 344 355 syl2anc φ x −∞ E X D E X ¬ x E X x E X
357 341 356 pm2.61dan φ x −∞ E X D E X x E X
358 357 adantlr φ i 0 ..^ M x −∞ E X D E X x E X
359 336 358 sylan2 φ i 0 ..^ M x Q i +∞ −∞ E X D E X x E X
360 359 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X x E X
361 323 324 329 335 360 eliocd φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X x Q i E X
362 322 361 impbida φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x Q i +∞ −∞ E X D E X
363 362 eqrdv φ i 0 ..^ M E X Q i Q i + 1 Q i E X = Q i +∞ −∞ E X D E X
364 ioossre −∞ E X
365 ssinss1 −∞ E X −∞ E X D
366 364 365 mp1i φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D
367 238 snssd φ i 0 ..^ M E X Q i Q i + 1 E X
368 366 367 unssd φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D E X
369 eqid topGen ran . = topGen ran .
370 236 369 rerest −∞ E X D E X TopOpen fld 𝑡 −∞ E X D E X = topGen ran . 𝑡 −∞ E X D E X
371 368 370 syl φ i 0 ..^ M E X Q i Q i + 1 TopOpen fld 𝑡 −∞ E X D E X = topGen ran . 𝑡 −∞ E X D E X
372 260 363 371 3eltr4d φ i 0 ..^ M E X Q i Q i + 1 Q i E X TopOpen fld 𝑡 −∞ E X D E X
373 isopn3i TopOpen fld 𝑡 −∞ E X D E X Top Q i E X TopOpen fld 𝑡 −∞ E X D E X int TopOpen fld 𝑡 −∞ E X D E X Q i E X = Q i E X
374 253 372 373 sylancr φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ E X D E X Q i E X = Q i E X
375 246 374 eqtr2d φ i 0 ..^ M E X Q i Q i + 1 Q i E X = int TopOpen fld 𝑡 −∞ E X D E X Q i E X E X
376 243 375 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 E X int TopOpen fld 𝑡 −∞ E X D E X Q i E X E X
377 198 232 235 236 237 376 limcres φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D Q i E X lim E X = F −∞ E X D lim E X
378 232 resabs1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D Q i E X = F Q i E X
379 378 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D Q i E X lim E X = F Q i E X lim E X
380 191 377 379 3eqtr2d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X = F Q i E X lim E X
381 186 feq2d φ F : dom F F : D
382 194 381 mpbird φ F : dom F
383 382 adantr φ y F Q i E X lim E X F : dom F
384 383 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X F : dom F
385 ioosscn Q i E X
386 385 a1i φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Q i E X
387 186 eqcomd φ D = dom F
388 387 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 D = dom F
389 231 388 sseqtrd φ i 0 ..^ M E X Q i Q i + 1 Q i E X dom F
390 389 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Q i E X dom F
391 15 a1i φ Z = x B x T T
392 oveq2 x = X B x = B X
393 392 oveq1d x = X B x T = B X T
394 393 fveq2d x = X B x T = B X T
395 394 oveq1d x = X B x T T = B X T T
396 395 adantl φ x = X B x T T = B X T T
397 2 14 resubcld φ B X
398 2 1 resubcld φ B A
399 5 398 eqeltrid φ T
400 1 2 posdifd φ A < B 0 < B A
401 3 400 mpbid φ 0 < B A
402 5 eqcomi B A = T
403 402 a1i φ B A = T
404 401 403 breqtrd φ 0 < T
405 404 gt0ne0d φ T 0
406 397 399 405 redivcld φ B X T
407 406 flcld φ B X T
408 407 zred φ B X T
409 408 399 remulcld φ B X T T
410 391 396 14 409 fvmptd φ Z X = B X T T
411 410 409 eqeltrd φ Z X
412 411 recnd φ Z X
413 412 adantr φ y F Q i E X lim E X Z X
414 413 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Z X
415 414 negcld φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Z X
416 eqid z | x Q i E X z = x + Z X = z | x Q i E X z = x + Z X
417 ioosscn Q i Z X X
418 417 sseli y Q i Z X X y
419 418 adantl φ y Q i Z X X y
420 412 adantr φ y Q i Z X X Z X
421 419 420 pncand φ y Q i Z X X y + Z X - Z X = y
422 421 eqcomd φ y Q i Z X X y = y + Z X - Z X
423 422 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y = y + Z X - Z X
424 410 oveq2d φ y + Z X - Z X = y + Z X - B X T T
425 424 adantr φ y Q i Z X X y + Z X - Z X = y + Z X - B X T T
426 419 420 addcld φ y Q i Z X X y + Z X
427 409 recnd φ B X T T
428 427 adantr φ y Q i Z X X B X T T
429 426 428 negsubd φ y Q i Z X X y + Z X + B X T T = y + Z X - B X T T
430 407 zcnd φ B X T
431 399 recnd φ T
432 430 431 mulneg1d φ B X T T = B X T T
433 432 eqcomd φ B X T T = B X T T
434 433 oveq2d φ y + Z X + B X T T = y + Z X + B X T T
435 434 adantr φ y Q i Z X X y + Z X + B X T T = y + Z X + B X T T
436 425 429 435 3eqtr2d φ y Q i Z X X y + Z X - Z X = y + Z X + B X T T
437 436 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X - Z X = y + Z X + B X T T
438 407 znegcld φ B X T
439 438 adantr φ y Q i Z X X B X T
440 439 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X B X T
441 simpl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X φ
442 231 adantr φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X Q i E X D
443 205 adantr φ i 0 ..^ M y Q i Z X X Q i *
444 139 rexrd φ E X *
445 444 ad2antrr φ i 0 ..^ M y Q i Z X X E X *
446 elioore y Q i Z X X y
447 446 adantl φ y Q i Z X X y
448 411 adantr φ y Q i Z X X Z X
449 447 448 readdcld φ y Q i Z X X y + Z X
450 449 adantlr φ i 0 ..^ M y Q i Z X X y + Z X
451 411 adantr φ i 0 ..^ M Z X
452 204 451 resubcld φ i 0 ..^ M Q i Z X
453 452 rexrd φ i 0 ..^ M Q i Z X *
454 453 adantr φ i 0 ..^ M y Q i Z X X Q i Z X *
455 14 rexrd φ X *
456 455 ad2antrr φ i 0 ..^ M y Q i Z X X X *
457 simpr φ i 0 ..^ M y Q i Z X X y Q i Z X X
458 ioogtlb Q i Z X * X * y Q i Z X X Q i Z X < y
459 454 456 457 458 syl3anc φ i 0 ..^ M y Q i Z X X Q i Z X < y
460 204 adantr φ i 0 ..^ M y Q i Z X X Q i
461 451 adantr φ i 0 ..^ M y Q i Z X X Z X
462 446 adantl φ i 0 ..^ M y Q i Z X X y
463 460 461 462 ltsubaddd φ i 0 ..^ M y Q i Z X X Q i Z X < y Q i < y + Z X
464 459 463 mpbid φ i 0 ..^ M y Q i Z X X Q i < y + Z X
465 14 ad2antrr φ i 0 ..^ M y Q i Z X X X
466 iooltub Q i Z X * X * y Q i Z X X y < X
467 454 456 457 466 syl3anc φ i 0 ..^ M y Q i Z X X y < X
468 462 465 461 467 ltadd1dd φ i 0 ..^ M y Q i Z X X y + Z X < X + Z X
469 16 a1i φ E = x x + Z x
470 id x = X x = X
471 fveq2 x = X Z x = Z X
472 470 471 oveq12d x = X x + Z x = X + Z X
473 472 adantl φ x = X x + Z x = X + Z X
474 14 411 readdcld φ X + Z X
475 469 473 14 474 fvmptd φ E X = X + Z X
476 475 eqcomd φ X + Z X = E X
477 476 ad2antrr φ i 0 ..^ M y Q i Z X X X + Z X = E X
478 468 477 breqtrd φ i 0 ..^ M y Q i Z X X y + Z X < E X
479 443 445 450 464 478 eliood φ i 0 ..^ M y Q i Z X X y + Z X Q i E X
480 479 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X Q i E X
481 442 480 sseldd φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X D
482 441 481 440 3jca φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X φ y + Z X D B X T
483 eleq1 k = B X T k B X T
484 483 3anbi3d k = B X T φ y + Z X D k φ y + Z X D B X T
485 oveq1 k = B X T k T = B X T T
486 485 oveq2d k = B X T y + Z X + k T = y + Z X + B X T T
487 486 eleq1d k = B X T y + Z X + k T D y + Z X + B X T T D
488 484 487 imbi12d k = B X T φ y + Z X D k y + Z X + k T D φ y + Z X D B X T y + Z X + B X T T D
489 ovex y + Z X V
490 eleq1 x = y + Z X x D y + Z X D
491 490 3anbi2d x = y + Z X φ x D k φ y + Z X D k
492 oveq1 x = y + Z X x + k T = y + Z X + k T
493 492 eleq1d x = y + Z X x + k T D y + Z X + k T D
494 491 493 imbi12d x = y + Z X φ x D k x + k T D φ y + Z X D k y + Z X + k T D
495 489 494 10 vtocl φ y + Z X D k y + Z X + k T D
496 488 495 vtoclg B X T φ y + Z X D B X T y + Z X + B X T T D
497 440 482 496 sylc φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X + B X T T D
498 437 497 eqeltrd φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X - Z X D
499 423 498 eqeltrd φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y D
500 499 ralrimiva φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y D
501 dfss3 Q i Z X X D y Q i Z X X y D
502 500 501 sylibr φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X D
503 204 recnd φ i 0 ..^ M Q i
504 412 adantr φ i 0 ..^ M Z X
505 503 504 negsubd φ i 0 ..^ M Q i + Z X = Q i Z X
506 505 eqcomd φ i 0 ..^ M Q i Z X = Q i + Z X
507 475 oveq1d φ E X + Z X = X + Z X + Z X
508 474 recnd φ X + Z X
509 508 412 negsubd φ X + Z X + Z X = X + Z X - Z X
510 14 recnd φ X
511 510 412 pncand φ X + Z X - Z X = X
512 507 509 511 3eqtrrd φ X = E X + Z X
513 512 adantr φ i 0 ..^ M X = E X + Z X
514 506 513 oveq12d φ i 0 ..^ M Q i Z X X = Q i + Z X E X + Z X
515 451 renegcld φ i 0 ..^ M Z X
516 204 278 515 iooshift φ i 0 ..^ M Q i + Z X E X + Z X = z | x Q i E X z = x + Z X
517 514 516 eqtr2d φ i 0 ..^ M z | x Q i E X z = x + Z X = Q i Z X X
518 517 3adant3 φ i 0 ..^ M E X Q i Q i + 1 z | x Q i E X z = x + Z X = Q i Z X X
519 186 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 dom F = D
520 502 518 519 3sstr4d φ i 0 ..^ M E X Q i Q i + 1 z | x Q i E X z = x + Z X dom F
521 520 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X z | x Q i E X z = x + Z X dom F
522 410 negeqd φ Z X = B X T T
523 522 433 eqtrd φ Z X = B X T T
524 523 oveq2d φ x + Z X = x + B X T T
525 524 fveq2d φ F x + Z X = F x + B X T T
526 525 adantr φ x Q i E X F x + Z X = F x + B X T T
527 526 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X F x + Z X = F x + B X T T
528 438 adantr φ x Q i E X B X T
529 528 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X B X T
530 simpl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X φ
531 231 sselda φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x D
532 530 531 529 3jca φ i 0 ..^ M E X Q i Q i + 1 x Q i E X φ x D B X T
533 483 3anbi3d k = B X T φ x D k φ x D B X T
534 485 oveq2d k = B X T x + k T = x + B X T T
535 534 fveq2d k = B X T F x + k T = F x + B X T T
536 535 eqeq1d k = B X T F x + k T = F x F x + B X T T = F x
537 533 536 imbi12d k = B X T φ x D k F x + k T = F x φ x D B X T F x + B X T T = F x
538 537 11 vtoclg B X T φ x D B X T F x + B X T T = F x
539 529 532 538 sylc φ i 0 ..^ M E X Q i Q i + 1 x Q i E X F x + B X T T = F x
540 527 539 eqtrd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X F x + Z X = F x
541 540 adantlr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X x Q i E X F x + Z X = F x
542 simpr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F Q i E X lim E X
543 384 386 390 415 416 521 541 542 limcperiod φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F z | x Q i E X z = x + Z X lim E X + Z X
544 517 reseq2d φ i 0 ..^ M F z | x Q i E X z = x + Z X = F Q i Z X X
545 513 eqcomd φ i 0 ..^ M E X + Z X = X
546 544 545 oveq12d φ i 0 ..^ M F z | x Q i E X z = x + Z X lim E X + Z X = F Q i Z X X lim X
547 546 3adant3 φ i 0 ..^ M E X Q i Q i + 1 F z | x Q i E X z = x + Z X lim E X + Z X = F Q i Z X X lim X
548 547 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X F z | x Q i E X z = x + Z X lim E X + Z X = F Q i Z X X lim X
549 543 548 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F Q i Z X X lim X
550 382 adantr φ y F Q i Z X X lim X F : dom F
551 550 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X F : dom F
552 417 a1i φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X Q i Z X X
553 502 519 sseqtrrd φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X dom F
554 553 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X Q i Z X X dom F
555 412 adantr φ y F Q i Z X X lim X Z X
556 555 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X Z X
557 eqid z | x Q i Z X X z = x + Z X = z | x Q i Z X X z = x + Z X
558 503 504 npcand φ i 0 ..^ M Q i - Z X + Z X = Q i
559 558 eqcomd φ i 0 ..^ M Q i = Q i - Z X + Z X
560 475 adantr φ i 0 ..^ M E X = X + Z X
561 559 560 oveq12d φ i 0 ..^ M Q i E X = Q i - Z X + Z X X + Z X
562 14 adantr φ i 0 ..^ M X
563 452 562 451 iooshift φ i 0 ..^ M Q i - Z X + Z X X + Z X = z | x Q i Z X X z = x + Z X
564 561 563 eqtr2d φ i 0 ..^ M z | x Q i Z X X z = x + Z X = Q i E X
565 564 3adant3 φ i 0 ..^ M E X Q i Q i + 1 z | x Q i Z X X z = x + Z X = Q i E X
566 231 565 519 3sstr4d φ i 0 ..^ M E X Q i Q i + 1 z | x Q i Z X X z = x + Z X dom F
567 566 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X z | x Q i Z X X z = x + Z X dom F
568 410 oveq2d φ x + Z X = x + B X T T
569 568 fveq2d φ F x + Z X = F x + B X T T
570 569 adantr φ x Q i Z X X F x + Z X = F x + B X T T
571 570 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X F x + Z X = F x + B X T T
572 407 adantr φ x Q i Z X X B X T
573 572 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X B X T
574 simpl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X φ
575 502 sselda φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x D
576 574 575 573 3jca φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X φ x D B X T
577 eleq1 k = B X T k B X T
578 577 3anbi3d k = B X T φ x D k φ x D B X T
579 oveq1 k = B X T k T = B X T T
580 579 oveq2d k = B X T x + k T = x + B X T T
581 580 fveq2d k = B X T F x + k T = F x + B X T T
582 581 eqeq1d k = B X T F x + k T = F x F x + B X T T = F x
583 578 582 imbi12d k = B X T φ x D k F x + k T = F x φ x D B X T F x + B X T T = F x
584 583 11 vtoclg B X T φ x D B X T F x + B X T T = F x
585 573 576 584 sylc φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X F x + B X T T = F x
586 571 585 eqtrd φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X F x + Z X = F x
587 586 adantlr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X x Q i Z X X F x + Z X = F x
588 simpr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X y F Q i Z X X lim X
589 551 552 554 556 557 567 587 588 limcperiod φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X y F z | x Q i Z X X z = x + Z X lim X + Z X
590 564 reseq2d φ i 0 ..^ M F z | x Q i Z X X z = x + Z X = F Q i E X
591 476 adantr φ i 0 ..^ M X + Z X = E X
592 590 591 oveq12d φ i 0 ..^ M F z | x Q i Z X X z = x + Z X lim X + Z X = F Q i E X lim E X
593 592 3adant3 φ i 0 ..^ M E X Q i Q i + 1 F z | x Q i Z X X z = x + Z X lim X + Z X = F Q i E X lim E X
594 593 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X F z | x Q i Z X X z = x + Z X lim X + Z X = F Q i E X lim E X
595 589 594 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X y F Q i E X lim E X
596 549 595 impbida φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F Q i Z X X lim X
597 596 eqrdv φ i 0 ..^ M E X Q i Q i + 1 F Q i E X lim E X = F Q i Z X X lim X
598 resindm Rel F F −∞ X dom F = F −∞ X
599 598 eqcomd Rel F F −∞ X = F −∞ X dom F
600 181 599 syl φ F −∞ X = F −∞ X dom F
601 186 ineq2d φ −∞ X dom F = −∞ X D
602 601 reseq2d φ F −∞ X dom F = F −∞ X D
603 600 602 eqtrd φ F −∞ X = F −∞ X D
604 603 oveq1d φ F −∞ X lim X = F −∞ X D lim X
605 604 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 F −∞ X lim X = F −∞ X D lim X
606 inss2 −∞ X D D
607 606 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ X D D
608 195 607 fssresd φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D : −∞ X D
609 452 mnfltd φ i 0 ..^ M −∞ < Q i Z X
610 200 453 609 xrltled φ i 0 ..^ M −∞ Q i Z X
611 iooss1 −∞ * −∞ Q i Z X Q i Z X X −∞ X
612 199 610 611 sylancr φ i 0 ..^ M Q i Z X X −∞ X
613 612 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X −∞ X
614 613 502 ssind φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X −∞ X D
615 606 234 sstrid φ i 0 ..^ M E X Q i Q i + 1 −∞ X D
616 eqid TopOpen fld 𝑡 −∞ X D X = TopOpen fld 𝑡 −∞ X D X
617 453 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i Z X *
618 455 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 X *
619 475 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 E X = X + Z X
620 241 619 breqtrd φ i 0 ..^ M E X Q i Q i + 1 Q i < X + Z X
621 411 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 Z X
622 14 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 X
623 216 621 622 ltsubaddd φ i 0 ..^ M E X Q i Q i + 1 Q i Z X < X Q i < X + Z X
624 620 623 mpbird φ i 0 ..^ M E X Q i Q i + 1 Q i Z X < X
625 14 leidd φ X X
626 625 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 X X
627 617 618 618 624 626 eliocd φ i 0 ..^ M E X Q i Q i + 1 X Q i Z X X
628 ioounsn Q i Z X * X * Q i Z X < X Q i Z X X X = Q i Z X X
629 617 618 624 628 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X X = Q i Z X X
630 629 fveq2d φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ X D X Q i Z X X X = int TopOpen fld 𝑡 −∞ X D X Q i Z X X
631 ovex −∞ X V
632 631 inex1 −∞ X D V
633 snex X V
634 632 633 unex −∞ X D X V
635 resttop TopOpen fld Top −∞ X D X V TopOpen fld 𝑡 −∞ X D X Top
636 247 634 635 mp2an TopOpen fld 𝑡 −∞ X D X Top
637 634 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ X D X V
638 iooretop Q i Z X +∞ topGen ran .
639 638 a1i φ i 0 ..^ M E X Q i Q i + 1 Q i Z X +∞ topGen ran .
640 elrestr topGen ran . Top −∞ X D X V Q i Z X +∞ topGen ran . Q i Z X +∞ −∞ X D X topGen ran . 𝑡 −∞ X D X
641 255 637 639 640 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i Z X +∞ −∞ X D X topGen ran . 𝑡 −∞ X D X
642 453 adantr φ i 0 ..^ M x Q i Z X X Q i Z X *
643 262 a1i φ i 0 ..^ M x Q i Z X X +∞ *
644 14 ad2antrr φ i 0 ..^ M x Q i Z X X X
645 iocssre Q i Z X * X Q i Z X X
646 642 644 645 syl2anc φ i 0 ..^ M x Q i Z X X Q i Z X X
647 simpr φ i 0 ..^ M x Q i Z X X x Q i Z X X
648 646 647 sseldd φ i 0 ..^ M x Q i Z X X x
649 455 ad2antrr φ i 0 ..^ M x Q i Z X X X *
650 iocgtlb Q i Z X * X * x Q i Z X X Q i Z X < x
651 642 649 647 650 syl3anc φ i 0 ..^ M x Q i Z X X Q i Z X < x
652 648 ltpnfd φ i 0 ..^ M x Q i Z X X x < +∞
653 642 643 648 651 652 eliood φ i 0 ..^ M x Q i Z X X x Q i Z X +∞
654 653 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x Q i Z X +∞
655 eqvisset x = X X V
656 snidg X V X X
657 655 656 syl x = X X X
658 470 657 eqeltrd x = X x X
659 elun2 x X x −∞ X D X
660 658 659 syl x = X x −∞ X D X
661 660 adantl φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x = X x −∞ X D X
662 simpll φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X ¬ x = X φ i 0 ..^ M E X Q i Q i + 1
663 642 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X Q i Z X *
664 455 ad3antrrr φ i 0 ..^ M x Q i Z X X ¬ x = X X *
665 648 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X x
666 651 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X Q i Z X < x
667 14 ad3antrrr φ i 0 ..^ M x Q i Z X X ¬ x = X X
668 iocleub Q i Z X * X * x Q i Z X X x X
669 642 649 647 668 syl3anc φ i 0 ..^ M x Q i Z X X x X
670 669 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X x X
671 470 eqcoms X = x x = X
672 671 necon3bi ¬ x = X X x
673 672 adantl φ i 0 ..^ M x Q i Z X X ¬ x = X X x
674 665 667 670 673 leneltd φ i 0 ..^ M x Q i Z X X ¬ x = X x < X
675 663 664 665 666 674 eliood φ i 0 ..^ M x Q i Z X X ¬ x = X x Q i Z X X
676 675 3adantll3 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X ¬ x = X x Q i Z X X
677 614 sselda φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x −∞ X D
678 elun1 x −∞ X D x −∞ X D X
679 677 678 syl φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x −∞ X D X
680 662 676 679 syl2anc φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X ¬ x = X x −∞ X D X
681 661 680 pm2.61dan φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x −∞ X D X
682 654 681 elind φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x Q i Z X +∞ −∞ X D X
683 617 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X Q i Z X *
684 618 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X X *
685 elinel1 x Q i Z X +∞ −∞ X D X x Q i Z X +∞
686 elioore x Q i Z X +∞ x
687 685 686 syl x Q i Z X +∞ −∞ X D X x
688 687 rexrd x Q i Z X +∞ −∞ X D X x *
689 688 adantl φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X x *
690 453 adantr φ i 0 ..^ M x Q i Z X +∞ −∞ X D X Q i Z X *
691 262 a1i φ i 0 ..^ M x Q i Z X +∞ −∞ X D X +∞ *
692 685 adantl φ i 0 ..^ M x Q i Z X +∞ −∞ X D X x Q i Z X +∞
693 ioogtlb Q i Z X * +∞ * x Q i Z X +∞ Q i Z X < x
694 690 691 692 693 syl3anc φ i 0 ..^ M x Q i Z X +∞ −∞ X D X Q i Z X < x
695 694 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X Q i Z X < x
696 elinel2 x Q i Z X +∞ −∞ X D X x −∞ X D X
697 elsni x X x = X
698 697 adantl φ x X x = X
699 625 adantr φ x X X X
700 698 699 eqbrtrd φ x X x X
701 700 adantlr φ x −∞ X D X x X x X
702 simpll φ x −∞ X D X ¬ x X φ
703 elunnel2 x −∞ X D X ¬ x X x −∞ X D
704 703 adantll φ x −∞ X D X ¬ x X x −∞ X D
705 elinel1 x −∞ X D x −∞ X
706 704 705 syl φ x −∞ X D X ¬ x X x −∞ X
707 elioore x −∞ X x
708 707 adantl φ x −∞ X x
709 14 adantr φ x −∞ X X
710 199 a1i φ x −∞ X −∞ *
711 455 adantr φ x −∞ X X *
712 simpr φ x −∞ X x −∞ X
713 iooltub −∞ * X * x −∞ X x < X
714 710 711 712 713 syl3anc φ x −∞ X x < X
715 708 709 714 ltled φ x −∞ X x X
716 702 706 715 syl2anc φ x −∞ X D X ¬ x X x X
717 701 716 pm2.61dan φ x −∞ X D X x X
718 696 717 sylan2 φ x Q i Z X +∞ −∞ X D X x X
719 718 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X x X
720 683 684 689 695 719 eliocd φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X x Q i Z X X
721 682 720 impbida φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x Q i Z X +∞ −∞ X D X
722 721 eqrdv φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X = Q i Z X +∞ −∞ X D X
723 606 8 sstrid φ −∞ X D
724 14 snssd φ X
725 723 724 unssd φ −∞ X D X
726 725 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 −∞ X D X
727 236 369 rerest −∞ X D X TopOpen fld 𝑡 −∞ X D X = topGen ran . 𝑡 −∞ X D X
728 726 727 syl φ i 0 ..^ M E X Q i Q i + 1 TopOpen fld 𝑡 −∞ X D X = topGen ran . 𝑡 −∞ X D X
729 641 722 728 3eltr4d φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X TopOpen fld 𝑡 −∞ X D X
730 isopn3i TopOpen fld 𝑡 −∞ X D X Top Q i Z X X TopOpen fld 𝑡 −∞ X D X int TopOpen fld 𝑡 −∞ X D X Q i Z X X = Q i Z X X
731 636 729 730 sylancr φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ X D X Q i Z X X = Q i Z X X
732 630 731 eqtr2d φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X = int TopOpen fld 𝑡 −∞ X D X Q i Z X X X
733 627 732 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 X int TopOpen fld 𝑡 −∞ X D X Q i Z X X X
734 608 614 615 236 616 733 limcres φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D Q i Z X X lim X = F −∞ X D lim X
735 734 eqcomd φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D lim X = F −∞ X D Q i Z X X lim X
736 614 resabs1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D Q i Z X X = F Q i Z X X
737 736 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D Q i Z X X lim X = F Q i Z X X lim X
738 605 735 737 3eqtrrd φ i 0 ..^ M E X Q i Q i + 1 F Q i Z X X lim X = F −∞ X lim X
739 380 597 738 3eqtrrd φ i 0 ..^ M E X Q i Q i + 1 F −∞ X lim X = F −∞ E X lim E X
740 739 rexlimdv3a φ i 0 ..^ M E X Q i Q i + 1 F −∞ X lim X = F −∞ E X lim E X
741 179 740 mpd φ F −∞ X lim X = F −∞ E X lim E X
742 126 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i < Q i + 1
743 12 3adant3 φ i 0 ..^ M E X Q i Q i + 1 F Q i Q i + 1 : Q i Q i + 1 cn
744 13 3adant3 φ i 0 ..^ M E X Q i Q i + 1 L F Q i Q i + 1 lim Q i + 1
745 eqid if E X = Q i + 1 L F Q i Q i + 1 E X = if E X = Q i + 1 L F Q i Q i + 1 E X
746 eqid TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1
747 216 214 742 743 744 216 238 241 222 745 746 fourierdlem33 φ i 0 ..^ M E X Q i Q i + 1 if E X = Q i + 1 L F Q i Q i + 1 E X F Q i Q i + 1 Q i E X lim E X
748 222 resabs1d φ i 0 ..^ M E X Q i Q i + 1 F Q i Q i + 1 Q i E X = F Q i E X
749 748 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F Q i Q i + 1 Q i E X lim E X = F Q i E X lim E X
750 747 749 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 if E X = Q i + 1 L F Q i Q i + 1 E X F Q i E X lim E X
751 ne0i if E X = Q i + 1 L F Q i Q i + 1 E X F Q i E X lim E X F Q i E X lim E X
752 750 751 syl φ i 0 ..^ M E X Q i Q i + 1 F Q i E X lim E X
753 380 752 eqnetrd φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X
754 753 rexlimdv3a φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X
755 179 754 mpd φ F −∞ E X lim E X
756 741 755 eqnetrd φ F −∞ X lim X