| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem49.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem49.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem49.altb | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | fourierdlem49.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 5 |  | fourierdlem49.t | ⊢ 𝑇  =  ( 𝐵  −  𝐴 ) | 
						
							| 6 |  | fourierdlem49.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem49.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem49.d | ⊢ ( 𝜑  →  𝐷  ⊆  ℝ ) | 
						
							| 9 |  | fourierdlem49.f | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 10 |  | fourierdlem49.dper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷 ) | 
						
							| 11 |  | fourierdlem49.per | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 |  | fourierdlem49.cn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 13 |  | fourierdlem49.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 14 |  | fourierdlem49.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 15 |  | fourierdlem49.z | ⊢ 𝑍  =  ( 𝑥  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 16 |  | fourierdlem49.e | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( 𝑍 ‘ 𝑥 ) ) ) | 
						
							| 17 |  | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 )  ∈  V | 
						
							| 18 | 15 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 )  ∈  V )  →  ( 𝑍 ‘ 𝑥 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 19 | 17 18 | mpan2 | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑍 ‘ 𝑥 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  ( 𝑍 ‘ 𝑥 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 21 | 20 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( 𝑍 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 22 | 16 21 | eqtri | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 23 | 1 2 3 5 22 | fourierdlem4 | ⊢ ( 𝜑  →  𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) | 
						
							| 24 | 23 14 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 ) | 
						
							| 26 | 4 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 27 | 6 26 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 28 | 7 27 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 30 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 32 |  | ffn | ⊢ ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ  →  𝑄  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  𝑄  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  𝑄  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 35 |  | fvelrnb | ⊢ ( 𝑄  Fn  ( 0 ... 𝑀 )  →  ( ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ( ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 37 | 25 36 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ∃ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 38 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  1  ∈  ℤ ) | 
						
							| 39 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 40 | 39 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 41 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 42 | 41 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  1  =  ( 0  +  1 ) ) | 
						
							| 43 | 40 | zred | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 44 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  0  ≤  𝑗 ) | 
						
							| 45 | 44 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  0  ≤  𝑗 ) | 
						
							| 46 |  | id | ⊢ ( ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 )  →  ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 51 | 28 | simprld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) ) | 
						
							| 52 | 51 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 54 | 48 50 53 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ( 𝐸 ‘ 𝑋 )  =  𝐴 ) | 
						
							| 55 | 54 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ( 𝐸 ‘ 𝑋 )  =  𝐴 ) | 
						
							| 56 | 55 | adantllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ( 𝐸 ‘ 𝑋 )  =  𝐴 ) | 
						
							| 57 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 58 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 60 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 62 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 63 |  | iocgtlb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  𝐴  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 64 | 59 61 62 63 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  𝐴  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 65 | 57 64 | gtned | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ( 𝐸 ‘ 𝑋 )  ≠  𝐴 ) | 
						
							| 66 | 65 | neneqd | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ¬  ( 𝐸 ‘ 𝑋 )  =  𝐴 ) | 
						
							| 67 | 66 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  ∧  𝑗  =  0 )  →  ¬  ( 𝐸 ‘ 𝑋 )  =  𝐴 ) | 
						
							| 68 | 56 67 | pm2.65da | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ¬  𝑗  =  0 ) | 
						
							| 69 | 68 | neqned | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑗  ≠  0 ) | 
						
							| 70 | 43 45 69 | ne0gt0d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  0  <  𝑗 ) | 
						
							| 71 |  | 0zd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  0  ∈  ℤ ) | 
						
							| 72 |  | zltp1le | ⊢ ( ( 0  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 0  <  𝑗  ↔  ( 0  +  1 )  ≤  𝑗 ) ) | 
						
							| 73 | 71 40 72 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 0  <  𝑗  ↔  ( 0  +  1 )  ≤  𝑗 ) ) | 
						
							| 74 | 70 73 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 0  +  1 )  ≤  𝑗 ) | 
						
							| 75 | 42 74 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  1  ≤  𝑗 ) | 
						
							| 76 |  | eluz2 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 1 )  ↔  ( 1  ∈  ℤ  ∧  𝑗  ∈  ℤ  ∧  1  ≤  𝑗 ) ) | 
						
							| 77 | 38 40 75 76 | syl3anbrc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 78 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 79 | 77 78 | eleqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 80 |  | nnm1nn0 | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  −  1 )  ∈  ℕ0 ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  ∈  ℕ0 ) | 
						
							| 82 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 83 | 82 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ℕ0  =  ( ℤ≥ ‘ 0 ) ) | 
						
							| 84 | 81 83 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 85 | 6 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 86 | 85 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 87 |  | peano2zm | ⊢ ( 𝑗  ∈  ℤ  →  ( 𝑗  −  1 )  ∈  ℤ ) | 
						
							| 88 | 39 87 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  1 )  ∈  ℤ ) | 
						
							| 89 | 88 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  1 )  ∈  ℝ ) | 
						
							| 90 | 39 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 91 |  | elfzel2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 92 | 91 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 93 | 90 | ltm1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  1 )  <  𝑗 ) | 
						
							| 94 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ≤  𝑀 ) | 
						
							| 95 | 89 90 92 93 94 | ltletrd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  1 )  <  𝑀 ) | 
						
							| 96 | 95 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  <  𝑀 ) | 
						
							| 97 |  | elfzo2 | ⊢ ( ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 )  ↔  ( ( 𝑗  −  1 )  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑀  ∈  ℤ  ∧  ( 𝑗  −  1 )  <  𝑀 ) ) | 
						
							| 98 | 84 86 96 97 | syl3anbrc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 99 | 31 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 100 | 40 87 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  ∈  ℤ ) | 
						
							| 101 | 81 | nn0ge0d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  0  ≤  ( 𝑗  −  1 ) ) | 
						
							| 102 | 89 92 95 | ltled | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑗  −  1 )  ≤  𝑀 ) | 
						
							| 103 | 102 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  ≤  𝑀 ) | 
						
							| 104 | 71 86 100 101 103 | elfzd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑗  −  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 105 | 99 104 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  ∈  ℝ ) | 
						
							| 106 | 105 | rexrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  ∈  ℝ* ) | 
						
							| 107 | 31 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 108 | 107 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 109 | 108 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 111 |  | iocssre | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 (,] 𝐵 )  ⊆  ℝ ) | 
						
							| 112 | 58 2 111 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ⊆  ℝ ) | 
						
							| 113 | 112 | sselda | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 114 | 113 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 115 | 114 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 116 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  𝜑 ) | 
						
							| 117 |  | ovex | ⊢ ( 𝑗  −  1 )  ∈  V | 
						
							| 118 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 119 | 118 | anbi2d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ↔  ( 𝜑  ∧  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 ) ) ) ) | 
						
							| 120 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 121 |  | oveq1 | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( 𝑖  +  1 )  =  ( ( 𝑗  −  1 )  +  1 ) ) | 
						
							| 122 | 121 | fveq2d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) | 
						
							| 123 | 120 122 | breq12d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑄 ‘ ( 𝑗  −  1 ) )  <  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) | 
						
							| 124 | 119 123 | imbi12d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( 𝜑  ∧  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  <  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) ) | 
						
							| 125 | 28 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 126 | 125 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 127 | 117 124 126 | vtocl | ⊢ ( ( 𝜑  ∧  ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  <  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) | 
						
							| 128 | 116 98 127 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  <  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) | 
						
							| 129 | 39 | zcnd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 130 |  | 1cnd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  1  ∈  ℂ ) | 
						
							| 131 | 129 130 | npcand | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( 𝑗  −  1 )  +  1 )  =  𝑗 ) | 
						
							| 132 | 131 | eqcomd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  =  ( ( 𝑗  −  1 )  +  1 ) ) | 
						
							| 133 | 132 | fveq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) | 
						
							| 134 | 133 | eqcomd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 135 | 134 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 136 | 128 135 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  <  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 137 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 138 | 136 137 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑗  −  1 ) )  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 139 | 112 24 | sseldd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 140 | 139 | leidd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 141 | 140 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 142 | 47 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 143 | 141 142 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 144 | 143 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 145 | 106 110 115 138 144 | eliocd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ 𝑗 ) ) ) | 
						
							| 146 | 133 | oveq2d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ 𝑗 ) )  =  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) | 
						
							| 147 | 146 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ 𝑗 ) )  =  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) | 
						
							| 148 | 145 147 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) | 
						
							| 149 | 120 122 | oveq12d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) | 
						
							| 150 | 149 | eleq2d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↔  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) ) ) | 
						
							| 151 | 150 | rspcev | ⊢ ( ( ( 𝑗  −  1 )  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ ( 𝑗  −  1 ) ) (,] ( 𝑄 ‘ ( ( 𝑗  −  1 )  +  1 ) ) ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 152 | 98 148 151 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 153 | 152 | ex | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 154 | 153 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 155 | 154 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑄 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑋 )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 156 | 37 155 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 157 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  𝑀  ∈  ℕ ) | 
						
							| 158 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 159 |  | iocssicc | ⊢ ( 𝐴 (,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 160 | 52 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 161 | 51 | simprd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 162 | 161 | eqcomd | ⊢ ( 𝜑  →  𝐵  =  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 163 | 160 162 | oveq12d | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  =  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 164 | 159 163 | sseqtrid | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ⊆  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 165 | 164 | sselda | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 167 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 ) | 
						
							| 168 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑗 ) ) | 
						
							| 169 | 168 | breq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑄 ‘ 𝑘 )  <  ( 𝐸 ‘ 𝑋 )  ↔  ( 𝑄 ‘ 𝑗 )  <  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 170 | 169 | cbvrabv | ⊢ { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  ( 𝐸 ‘ 𝑋 ) }  =  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  <  ( 𝐸 ‘ 𝑋 ) } | 
						
							| 171 | 170 | supeq1i | ⊢ sup ( { 𝑘  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑘 )  <  ( 𝐸 ‘ 𝑋 ) } ,  ℝ ,   <  )  =  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  <  ( 𝐸 ‘ 𝑋 ) } ,  ℝ ,   <  ) | 
						
							| 172 | 157 158 166 167 171 | fourierdlem25 | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 173 |  | ioossioc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 174 | 173 | sseli | ⊢ ( ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 175 | 174 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 176 | 175 | reximdva | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 177 | 172 176 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  ∧  ¬  ( 𝐸 ‘ 𝑋 )  ∈  ran  𝑄 )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 178 | 156 177 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( 𝐴 (,] 𝐵 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 179 | 24 178 | mpdan | ⊢ ( 𝜑  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 180 |  | frel | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  →  Rel  𝐹 ) | 
						
							| 181 | 9 180 | syl | ⊢ ( 𝜑  →  Rel  𝐹 ) | 
						
							| 182 |  | resindm | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) ) | 
						
							| 183 | 182 | eqcomd | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  =  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  dom  𝐹 ) ) ) | 
						
							| 184 | 181 183 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  =  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  dom  𝐹 ) ) ) | 
						
							| 185 |  | fdm | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  →  dom  𝐹  =  𝐷 ) | 
						
							| 186 | 9 185 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  𝐷 ) | 
						
							| 187 | 186 | ineq2d | ⊢ ( 𝜑  →  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  dom  𝐹 )  =  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) | 
						
							| 188 | 187 | reseq2d | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) ) | 
						
							| 189 | 184 188 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  =  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) ) | 
						
							| 190 | 189 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  =  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) ) | 
						
							| 191 | 190 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  =  ( ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 192 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 193 | 192 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 194 | 9 193 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 195 | 194 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐹 : 𝐷 ⟶ ℂ ) | 
						
							| 196 |  | inss2 | ⊢ ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ⊆  𝐷 | 
						
							| 197 | 196 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ⊆  𝐷 ) | 
						
							| 198 | 195 197 | fssresd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) : ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ⟶ ℂ ) | 
						
							| 199 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 200 | 199 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 201 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 202 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 203 | 202 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 204 | 201 203 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 205 | 204 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 206 | 204 | mnfltd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  -∞  <  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 207 | 200 205 206 | xrltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  -∞  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 208 |  | iooss1 | ⊢ ( ( -∞  ∈  ℝ*  ∧  -∞  ≤  ( 𝑄 ‘ 𝑖 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 209 | 199 207 208 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 210 | 209 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 211 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 212 | 211 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 213 | 201 212 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 214 | 213 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 215 | 214 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 216 | 204 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 217 | 216 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 218 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 219 |  | iocleub | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 220 | 217 215 218 219 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 221 |  | iooss2 | ⊢ ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 222 | 215 220 221 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 223 |  | cncff | ⊢ ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 224 |  | fdm | ⊢ ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  →  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 225 | 12 223 224 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 226 |  | ssdmres | ⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  𝐹  ↔  dom  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 227 | 225 226 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  𝐹 ) | 
						
							| 228 | 186 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  𝐹  =  𝐷 ) | 
						
							| 229 | 227 228 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  𝐷 ) | 
						
							| 230 | 229 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  𝐷 ) | 
						
							| 231 | 222 230 | sstrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  𝐷 ) | 
						
							| 232 | 210 231 | ssind | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) | 
						
							| 233 | 8 193 | sstrd | ⊢ ( 𝜑  →  𝐷  ⊆  ℂ ) | 
						
							| 234 | 233 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐷  ⊆  ℂ ) | 
						
							| 235 | 196 234 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ⊆  ℂ ) | 
						
							| 236 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 237 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 238 | 139 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 239 | 238 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 240 |  | iocgtlb | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 241 | 217 215 218 240 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 242 | 238 | leidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 243 | 217 239 239 241 242 | eliocd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 244 |  | ioounsn | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝑖 )  <  ( 𝐸 ‘ 𝑋 ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  =  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 245 | 217 239 241 244 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  =  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 246 | 245 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  =  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) ) | 
						
							| 247 | 236 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 248 |  | ovex | ⊢ ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∈  V | 
						
							| 249 | 248 | inex1 | ⊢ ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∈  V | 
						
							| 250 |  | snex | ⊢ { ( 𝐸 ‘ 𝑋 ) }  ∈  V | 
						
							| 251 | 249 250 | unex | ⊢ ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ∈  V | 
						
							| 252 |  | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ∈  V )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∈  Top ) | 
						
							| 253 | 247 251 252 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∈  Top | 
						
							| 254 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 255 | 254 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 256 | 251 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ∈  V ) | 
						
							| 257 |  | iooretop | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 258 | 257 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 259 |  | elrestr | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ∈  V  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 260 | 255 256 258 259 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 261 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 262 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 263 | 262 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  +∞  ∈  ℝ* ) | 
						
							| 264 | 238 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  <  +∞ ) | 
						
							| 265 | 217 263 238 241 264 | eliood | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ ) ) | 
						
							| 266 |  | snidg | ⊢ ( ( 𝐸 ‘ 𝑋 )  ∈  ℝ  →  ( 𝐸 ‘ 𝑋 )  ∈  { ( 𝐸 ‘ 𝑋 ) } ) | 
						
							| 267 |  | elun2 | ⊢ ( ( 𝐸 ‘ 𝑋 )  ∈  { ( 𝐸 ‘ 𝑋 ) }  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 268 | 266 267 | syl | ⊢ ( ( 𝐸 ‘ 𝑋 )  ∈  ℝ  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 269 | 139 268 | syl | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 270 | 269 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 271 | 265 270 | elind | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 272 | 271 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 273 | 261 272 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 274 | 273 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 275 | 217 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 276 | 262 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  +∞  ∈  ℝ* ) | 
						
							| 277 | 205 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 278 | 139 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 279 | 278 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 280 |  | iocssre | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ )  →  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  ⊆  ℝ ) | 
						
							| 281 | 277 279 280 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  ⊆  ℝ ) | 
						
							| 282 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 283 | 281 282 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 284 | 283 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 285 | 279 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 286 |  | iocgtlb | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 287 | 277 285 282 286 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 288 | 287 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 289 | 284 | ltpnfd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  <  +∞ ) | 
						
							| 290 | 275 276 284 288 289 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ ) ) | 
						
							| 291 | 290 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ ) ) | 
						
							| 292 | 199 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 293 | 285 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 294 | 283 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 295 | 294 | mnfltd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  -∞  <  𝑥 ) | 
						
							| 296 | 139 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 297 |  | iocleub | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 298 | 277 285 282 297 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 299 | 298 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 300 |  | neqne | ⊢ ( ¬  𝑥  =  ( 𝐸 ‘ 𝑋 )  →  𝑥  ≠  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 301 | 300 | necomd | ⊢ ( ¬  𝑥  =  ( 𝐸 ‘ 𝑋 )  →  ( 𝐸 ‘ 𝑋 )  ≠  𝑥 ) | 
						
							| 302 | 301 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ≠  𝑥 ) | 
						
							| 303 | 294 296 299 302 | leneltd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 304 | 292 293 294 295 303 | eliood | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 305 | 304 | 3adantll3 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 306 | 230 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  𝐷 ) | 
						
							| 307 | 275 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 308 | 215 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 309 | 284 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 310 | 288 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 311 | 238 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 312 | 214 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 313 | 303 | 3adantll3 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 314 | 220 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 315 | 309 311 312 313 314 | ltletrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 316 | 307 308 309 310 315 | eliood | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 317 | 306 316 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 318 | 305 317 | elind | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) | 
						
							| 319 |  | elun1 | ⊢ ( 𝑥  ∈  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  →  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 320 | 318 319 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 321 | 291 320 | elind | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  ∧  ¬  𝑥  =  ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 322 | 274 321 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 323 | 217 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 324 | 239 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 325 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ ) ) | 
						
							| 326 |  | elioore | ⊢ ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 327 | 326 | rexrd | ⊢ ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  →  𝑥  ∈  ℝ* ) | 
						
							| 328 | 325 327 | syl | ⊢ ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 329 | 328 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 330 | 205 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 331 | 262 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  +∞  ∈  ℝ* ) | 
						
							| 332 | 325 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ ) ) | 
						
							| 333 |  | ioogtlb | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) +∞ ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 334 | 330 331 332 333 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 335 | 334 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  𝑥 ) | 
						
							| 336 |  | elinel2 | ⊢ ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  →  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) | 
						
							| 337 |  | elsni | ⊢ ( 𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) }  →  𝑥  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 338 | 337 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝑥  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 339 | 140 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  ( 𝐸 ‘ 𝑋 )  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 340 | 338 339 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 341 | 340 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∧  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 342 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∧  ¬  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝜑 ) | 
						
							| 343 |  | elunnel2 | ⊢ ( ( 𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ∧  ¬  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝑥  ∈  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) | 
						
							| 344 | 343 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∧  ¬  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝑥  ∈  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) ) | 
						
							| 345 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  →  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 346 |  | elioore | ⊢ ( 𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 347 | 346 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 348 | 139 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 349 | 199 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  -∞  ∈  ℝ* ) | 
						
							| 350 | 348 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 351 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 352 |  | iooltub | ⊢ ( ( -∞  ∈  ℝ*  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ℝ*  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 353 | 349 350 351 352 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 354 | 347 348 353 | ltled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 355 | 345 354 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 356 | 342 344 355 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∧  ¬  𝑥  ∈  { ( 𝐸 ‘ 𝑋 ) } )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 357 | 341 356 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 358 | 357 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 359 | 336 358 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 360 | 359 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  𝑥  ≤  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 361 | 323 324 329 335 360 | eliocd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 362 | 322 361 | impbida | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  ↔  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ) | 
						
							| 363 | 362 | eqrdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  =  ( ( ( 𝑄 ‘ 𝑖 ) (,) +∞ )  ∩  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 364 |  | ioossre | ⊢ ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ℝ | 
						
							| 365 |  | ssinss1 | ⊢ ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ℝ  →  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ⊆  ℝ ) | 
						
							| 366 | 364 365 | mp1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ⊆  ℝ ) | 
						
							| 367 | 238 | snssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  { ( 𝐸 ‘ 𝑋 ) }  ⊆  ℝ ) | 
						
							| 368 | 366 367 | unssd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ⊆  ℝ ) | 
						
							| 369 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 370 | 236 369 | rerest | ⊢ ( ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } )  ⊆  ℝ  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 371 | 368 370 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 372 | 260 363 371 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 373 |  | isopn3i | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) )  ∈  Top  ∧  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 374 | 253 372 373 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 375 | 246 374 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝐸 ‘ 𝑋 ) )  =  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 376 | 243 375 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) ‘ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ∪  { ( 𝐸 ‘ 𝑋 ) } ) ) ) | 
						
							| 377 | 198 232 235 236 237 376 | limcres | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  =  ( ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 378 | 232 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) ) | 
						
							| 379 | 378 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐹  ↾  ( ( -∞ (,) ( 𝐸 ‘ 𝑋 ) )  ∩  𝐷 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 380 | 191 377 379 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 381 | 186 | feq2d | ⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ↔  𝐹 : 𝐷 ⟶ ℂ ) ) | 
						
							| 382 | 194 381 | mpbird | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 383 | 382 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 384 | 383 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 385 |  | ioosscn | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ℂ | 
						
							| 386 | 385 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  ℂ ) | 
						
							| 387 | 186 | eqcomd | ⊢ ( 𝜑  →  𝐷  =  dom  𝐹 ) | 
						
							| 388 | 387 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐷  =  dom  𝐹 ) | 
						
							| 389 | 231 388 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  dom  𝐹 ) | 
						
							| 390 | 389 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  dom  𝐹 ) | 
						
							| 391 | 15 | a1i | ⊢ ( 𝜑  →  𝑍  =  ( 𝑥  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 392 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐵  −  𝑥 )  =  ( 𝐵  −  𝑋 ) ) | 
						
							| 393 | 392 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐵  −  𝑥 )  /  𝑇 )  =  ( ( 𝐵  −  𝑋 )  /  𝑇 ) ) | 
						
							| 394 | 393 | fveq2d | ⊢ ( 𝑥  =  𝑋  →  ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) ) ) | 
						
							| 395 | 394 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 396 | 395 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 397 | 2 14 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 398 | 2 1 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 399 | 5 398 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 400 | 1 2 | posdifd | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  0  <  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 401 | 3 400 | mpbid | ⊢ ( 𝜑  →  0  <  ( 𝐵  −  𝐴 ) ) | 
						
							| 402 | 5 | eqcomi | ⊢ ( 𝐵  −  𝐴 )  =  𝑇 | 
						
							| 403 | 402 | a1i | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  =  𝑇 ) | 
						
							| 404 | 401 403 | breqtrd | ⊢ ( 𝜑  →  0  <  𝑇 ) | 
						
							| 405 | 404 | gt0ne0d | ⊢ ( 𝜑  →  𝑇  ≠  0 ) | 
						
							| 406 | 397 399 405 | redivcld | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 )  /  𝑇 )  ∈  ℝ ) | 
						
							| 407 | 406 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 408 | 407 | zred | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℝ ) | 
						
							| 409 | 408 399 | remulcld | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 )  ∈  ℝ ) | 
						
							| 410 | 391 396 14 409 | fvmptd | ⊢ ( 𝜑  →  ( 𝑍 ‘ 𝑋 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 411 | 410 409 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑍 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 412 | 411 | recnd | ⊢ ( 𝜑  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 413 | 412 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 414 | 413 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 415 | 414 | negcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  - ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 416 |  | eqid | ⊢ { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) }  =  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } | 
						
							| 417 |  | ioosscn | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  ℂ | 
						
							| 418 | 417 | sseli | ⊢ ( 𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  →  𝑦  ∈  ℂ ) | 
						
							| 419 | 418 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 420 | 412 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 421 | 419 420 | pncand | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  =  𝑦 ) | 
						
							| 422 | 421 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 423 | 422 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 424 | 410 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 425 | 424 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 426 | 419 420 | addcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 427 | 409 | recnd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 )  ∈  ℂ ) | 
						
							| 428 | 427 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 )  ∈  ℂ ) | 
						
							| 429 | 426 428 | negsubd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  - ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 430 | 407 | zcnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℂ ) | 
						
							| 431 | 399 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 432 | 430 431 | mulneg1d | ⊢ ( 𝜑  →  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 )  =  - ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 433 | 432 | eqcomd | ⊢ ( 𝜑  →  - ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 )  =  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 434 | 433 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  - ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 435 | 434 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  - ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 436 | 425 429 435 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 437 | 436 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 438 | 407 | znegcld | ⊢ ( 𝜑  →  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 439 | 438 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 440 | 439 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 441 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝜑 ) | 
						
							| 442 | 231 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  ⊆  𝐷 ) | 
						
							| 443 | 205 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 444 | 139 | rexrd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 445 | 444 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝐸 ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 446 |  | elioore | ⊢ ( 𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  →  𝑦  ∈  ℝ ) | 
						
							| 447 | 446 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 448 | 411 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 449 | 447 448 | readdcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 450 | 449 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 451 | 411 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 452 | 204 451 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 453 | 452 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 454 | 453 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 455 | 14 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 456 | 455 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 457 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) | 
						
							| 458 |  | ioogtlb | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑦 ) | 
						
							| 459 | 454 456 457 458 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑦 ) | 
						
							| 460 | 204 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 461 | 451 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 462 | 446 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 463 | 460 461 462 | ltsubaddd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑦  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) ) ) ) | 
						
							| 464 | 459 463 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 465 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 466 |  | iooltub | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  <  𝑋 ) | 
						
							| 467 | 454 456 457 466 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  <  𝑋 ) | 
						
							| 468 | 462 465 461 467 | ltadd1dd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  <  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 469 | 16 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( 𝑍 ‘ 𝑥 ) ) ) ) | 
						
							| 470 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 471 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑍 ‘ 𝑥 )  =  ( 𝑍 ‘ 𝑋 ) ) | 
						
							| 472 | 470 471 | oveq12d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +  ( 𝑍 ‘ 𝑥 ) )  =  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 473 | 472 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝑥  +  ( 𝑍 ‘ 𝑥 ) )  =  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 474 | 14 411 | readdcld | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 475 | 469 473 14 474 | fvmptd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 476 | 475 | eqcomd | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 477 | 476 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 478 | 468 477 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  <  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 479 | 443 445 450 464 478 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 480 | 479 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 481 | 442 480 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷 ) | 
						
							| 482 | 441 481 440 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) | 
						
							| 483 |  | eleq1 | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝑘  ∈  ℤ  ↔  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) | 
						
							| 484 | 483 | 3anbi3d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  𝑘  ∈  ℤ )  ↔  ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) ) | 
						
							| 485 |  | oveq1 | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝑘  ·  𝑇 )  =  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 486 | 485 | oveq2d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 487 | 486 | eleq1d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷  ↔  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  ∈  𝐷 ) ) | 
						
							| 488 | 484 487 | imbi12d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷 )  ↔  ( ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  ∈  𝐷 ) ) ) | 
						
							| 489 |  | ovex | ⊢ ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  V | 
						
							| 490 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  →  ( 𝑥  ∈  𝐷  ↔  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷 ) ) | 
						
							| 491 | 490 | 3anbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  ↔  ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  𝑘  ∈  ℤ ) ) ) | 
						
							| 492 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  =  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) ) ) | 
						
							| 493 | 492 | eleq1d | ⊢ ( 𝑥  =  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  →  ( ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷  ↔  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷 ) ) | 
						
							| 494 | 491 493 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷 )  ↔  ( ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷 ) ) ) | 
						
							| 495 | 489 494 10 | vtocl | ⊢ ( ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑘  ·  𝑇 ) )  ∈  𝐷 ) | 
						
							| 496 | 488 495 | vtoclg | ⊢ ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ  →  ( ( 𝜑  ∧  ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  ∈  𝐷 ) ) | 
						
							| 497 | 440 482 496 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) )  ∈  𝐷 ) | 
						
							| 498 | 437 497 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ( 𝑦  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  𝐷 ) | 
						
							| 499 | 423 498 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 500 | 499 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑦  ∈  𝐷 ) | 
						
							| 501 |  | dfss3 | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  𝐷  ↔  ∀ 𝑦  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑦  ∈  𝐷 ) | 
						
							| 502 | 500 501 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  𝐷 ) | 
						
							| 503 | 204 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 504 | 412 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 505 | 503 504 | negsubd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  - ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 506 | 505 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑄 ‘ 𝑖 )  +  - ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 507 | 475 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  +  - ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 508 | 474 | recnd | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 509 | 508 412 | negsubd | ⊢ ( 𝜑  →  ( ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  +  - ( 𝑍 ‘ 𝑋 ) )  =  ( ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 510 | 14 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 511 | 510 412 | pncand | ⊢ ( 𝜑  →  ( ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  −  ( 𝑍 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 512 | 507 509 511 | 3eqtrrd | ⊢ ( 𝜑  →  𝑋  =  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 513 | 512 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑋  =  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 514 | 506 513 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  - ( 𝑍 ‘ 𝑋 ) ) (,) ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) ) ) | 
						
							| 515 | 451 | renegcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  - ( 𝑍 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 516 | 204 278 515 | iooshift | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  - ( 𝑍 ‘ 𝑋 ) ) (,) ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } ) | 
						
							| 517 | 514 516 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) }  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) | 
						
							| 518 | 517 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) }  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) | 
						
							| 519 | 186 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  dom  𝐹  =  𝐷 ) | 
						
							| 520 | 502 518 519 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) }  ⊆  dom  𝐹 ) | 
						
							| 521 | 520 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) }  ⊆  dom  𝐹 ) | 
						
							| 522 | 410 | negeqd | ⊢ ( 𝜑  →  - ( 𝑍 ‘ 𝑋 )  =  - ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 523 | 522 433 | eqtrd | ⊢ ( 𝜑  →  - ( 𝑍 ‘ 𝑋 )  =  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 524 | 523 | oveq2d | ⊢ ( 𝜑  →  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) )  =  ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 525 | 524 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 526 | 525 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 527 | 526 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 528 | 438 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 529 | 528 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 530 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝜑 ) | 
						
							| 531 | 231 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 532 | 530 531 529 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) | 
						
							| 533 | 483 | 3anbi3d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  ↔  ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) ) | 
						
							| 534 | 485 | oveq2d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 535 | 534 | fveq2d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 536 | 535 | eqeq1d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 537 | 533 536 | imbi12d | ⊢ ( 𝑘  =  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 538 | 537 11 | vtoclg | ⊢ ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 539 | 529 532 538 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( - ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 540 | 527 539 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 541 | 540 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 542 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 543 | 384 386 390 415 416 521 541 542 | limcperiod | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  𝑦  ∈  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) ) ) | 
						
							| 544 | 517 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } )  =  ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) ) | 
						
							| 545 | 513 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 546 | 544 545 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 547 | 546 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 548 | 547 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) 𝑧  =  ( 𝑥  +  - ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( ( 𝐸 ‘ 𝑋 )  +  - ( 𝑍 ‘ 𝑋 ) ) )  =  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 549 | 543 548 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) )  →  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 550 | 382 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 551 | 550 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 552 | 417 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  ℂ ) | 
						
							| 553 | 502 519 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  dom  𝐹 ) | 
						
							| 554 | 553 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  dom  𝐹 ) | 
						
							| 555 | 412 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 556 | 555 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 557 |  | eqid | ⊢ { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) }  =  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } | 
						
							| 558 | 503 504 | npcand | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑍 ‘ 𝑋 ) )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 559 | 558 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 560 | 475 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐸 ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 561 | 559 560 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) )  =  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑍 ‘ 𝑋 ) ) (,) ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) ) | 
						
							| 562 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 563 | 452 562 451 | iooshift | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  +  ( 𝑍 ‘ 𝑋 ) ) (,) ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) )  =  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } ) | 
						
							| 564 | 561 563 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) }  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 565 | 564 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) }  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 566 | 231 565 519 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) }  ⊆  dom  𝐹 ) | 
						
							| 567 | 566 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) }  ⊆  dom  𝐹 ) | 
						
							| 568 | 410 | oveq2d | ⊢ ( 𝜑  →  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 569 | 568 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 570 | 569 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 571 | 570 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 572 | 407 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 573 | 572 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 574 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝜑 ) | 
						
							| 575 | 502 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 576 | 574 575 573 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) | 
						
							| 577 |  | eleq1 | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝑘  ∈  ℤ  ↔  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) | 
						
							| 578 | 577 | 3anbi3d | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  ↔  ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ ) ) ) | 
						
							| 579 |  | oveq1 | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝑘  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 580 | 579 | oveq2d | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 581 | 580 | fveq2d | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 582 | 581 | eqeq1d | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 583 | 578 582 | imbi12d | ⊢ ( 𝑘  =  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 584 | 583 11 | vtoclg | ⊢ ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 585 | 573 576 584 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑋 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 586 | 571 585 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 587 | 586 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 588 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 589 | 551 552 554 556 557 567 587 588 | limcperiod | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  𝑦  ∈  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) ) | 
						
							| 590 | 564 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) ) | 
						
							| 591 | 476 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) )  =  ( 𝐸 ‘ 𝑋 ) ) | 
						
							| 592 | 590 591 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 593 | 592 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 594 | 593 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  ( ( 𝐹  ↾  { 𝑧  ∈  ℂ  ∣  ∃ 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) 𝑧  =  ( 𝑥  +  ( 𝑍 ‘ 𝑋 ) ) } )  limℂ  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 595 | 589 594 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) )  →  𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 596 | 549 595 | impbida | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  ↔  𝑦  ∈  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) ) | 
						
							| 597 | 596 | eqrdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  =  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 598 |  | resindm | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  ( -∞ (,) 𝑋 ) ) ) | 
						
							| 599 | 598 | eqcomd | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  =  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  𝐹 ) ) ) | 
						
							| 600 | 181 599 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  =  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  𝐹 ) ) ) | 
						
							| 601 | 186 | ineq2d | ⊢ ( 𝜑  →  ( ( -∞ (,) 𝑋 )  ∩  dom  𝐹 )  =  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) | 
						
							| 602 | 601 | reseq2d | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) ) | 
						
							| 603 | 600 602 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  =  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) ) | 
						
							| 604 | 603 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  limℂ  𝑋 ) ) | 
						
							| 605 | 604 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  limℂ  𝑋 ) ) | 
						
							| 606 |  | inss2 | ⊢ ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ⊆  𝐷 | 
						
							| 607 | 606 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ⊆  𝐷 ) | 
						
							| 608 | 195 607 | fssresd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) : ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ⟶ ℂ ) | 
						
							| 609 | 452 | mnfltd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  -∞  <  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 610 | 200 453 609 | xrltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  -∞  ≤  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 611 |  | iooss1 | ⊢ ( ( -∞  ∈  ℝ*  ∧  -∞  ≤  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  ( -∞ (,) 𝑋 ) ) | 
						
							| 612 | 199 610 611 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  ( -∞ (,) 𝑋 ) ) | 
						
							| 613 | 612 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  ( -∞ (,) 𝑋 ) ) | 
						
							| 614 | 613 502 | ssind | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ⊆  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) | 
						
							| 615 | 606 234 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ⊆  ℂ ) | 
						
							| 616 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 617 | 453 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 618 | 455 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 619 | 475 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐸 ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 620 | 241 619 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) | 
						
							| 621 | 411 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑍 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 622 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 623 | 216 621 622 | ltsubaddd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑋  ↔  ( 𝑄 ‘ 𝑖 )  <  ( 𝑋  +  ( 𝑍 ‘ 𝑋 ) ) ) ) | 
						
							| 624 | 620 623 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑋 ) | 
						
							| 625 | 14 | leidd | ⊢ ( 𝜑  →  𝑋  ≤  𝑋 ) | 
						
							| 626 | 625 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ≤  𝑋 ) | 
						
							| 627 | 617 618 618 624 626 | eliocd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 628 |  | ioounsn | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑋 )  →  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ∪  { 𝑋 } )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 629 | 617 618 624 628 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ∪  { 𝑋 } )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 630 | 629 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ‘ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ∪  { 𝑋 } ) )  =  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ‘ ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) ) | 
						
							| 631 |  | ovex | ⊢ ( -∞ (,) 𝑋 )  ∈  V | 
						
							| 632 | 631 | inex1 | ⊢ ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∈  V | 
						
							| 633 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 634 | 632 633 | unex | ⊢ ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ∈  V | 
						
							| 635 |  | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ∈  V )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∈  Top ) | 
						
							| 636 | 247 634 635 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∈  Top | 
						
							| 637 | 634 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ∈  V ) | 
						
							| 638 |  | iooretop | ⊢ ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 639 | 638 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 640 |  | elrestr | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ∈  V  ∧  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) )  →  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 641 | 255 637 639 640 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∈  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 642 | 453 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 643 | 262 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  +∞  ∈  ℝ* ) | 
						
							| 644 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 645 |  | iocssre | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  ⊆  ℝ ) | 
						
							| 646 | 642 644 645 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  ⊆  ℝ ) | 
						
							| 647 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 648 | 646 647 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 649 | 455 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 650 |  | iocgtlb | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑥 ) | 
						
							| 651 | 642 649 647 650 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑥 ) | 
						
							| 652 | 648 | ltpnfd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  <  +∞ ) | 
						
							| 653 | 642 643 648 651 652 | eliood | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ ) ) | 
						
							| 654 | 653 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ ) ) | 
						
							| 655 |  | eqvisset | ⊢ ( 𝑥  =  𝑋  →  𝑋  ∈  V ) | 
						
							| 656 |  | snidg | ⊢ ( 𝑋  ∈  V  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 657 | 655 656 | syl | ⊢ ( 𝑥  =  𝑋  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 658 | 470 657 | eqeltrd | ⊢ ( 𝑥  =  𝑋  →  𝑥  ∈  { 𝑋 } ) | 
						
							| 659 |  | elun2 | ⊢ ( 𝑥  ∈  { 𝑋 }  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 660 | 658 659 | syl | ⊢ ( 𝑥  =  𝑋  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 661 | 660 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  𝑥  =  𝑋 )  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 662 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 663 | 642 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 664 | 455 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑋  ∈  ℝ* ) | 
						
							| 665 | 648 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑥  ∈  ℝ ) | 
						
							| 666 | 651 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑥 ) | 
						
							| 667 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 668 |  | iocleub | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ≤  𝑋 ) | 
						
							| 669 | 642 649 647 668 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ≤  𝑋 ) | 
						
							| 670 | 669 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑥  ≤  𝑋 ) | 
						
							| 671 | 470 | eqcoms | ⊢ ( 𝑋  =  𝑥  →  𝑥  =  𝑋 ) | 
						
							| 672 | 671 | necon3bi | ⊢ ( ¬  𝑥  =  𝑋  →  𝑋  ≠  𝑥 ) | 
						
							| 673 | 672 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑋  ≠  𝑥 ) | 
						
							| 674 | 665 667 670 673 | leneltd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑥  <  𝑋 ) | 
						
							| 675 | 663 664 665 666 674 | eliood | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) | 
						
							| 676 | 675 | 3adantll3 | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) | 
						
							| 677 | 614 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑥  ∈  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) | 
						
							| 678 |  | elun1 | ⊢ ( 𝑥  ∈  ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 679 | 677 678 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 680 | 662 676 679 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  ∧  ¬  𝑥  =  𝑋 )  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 681 | 661 680 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 682 | 654 681 | elind | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  →  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 683 | 617 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 684 | 618 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 685 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ ) ) | 
						
							| 686 |  | elioore | ⊢ ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 687 | 685 686 | syl | ⊢ ( 𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  →  𝑥  ∈  ℝ ) | 
						
							| 688 | 687 | rexrd | ⊢ ( 𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 689 | 688 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 690 | 453 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ* ) | 
						
							| 691 | 262 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  +∞  ∈  ℝ* ) | 
						
							| 692 | 685 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ ) ) | 
						
							| 693 |  | ioogtlb | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑥 ) | 
						
							| 694 | 690 691 692 693 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑥 ) | 
						
							| 695 | 694 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) )  <  𝑥 ) | 
						
							| 696 |  | elinel2 | ⊢ ( 𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  →  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) | 
						
							| 697 |  | elsni | ⊢ ( 𝑥  ∈  { 𝑋 }  →  𝑥  =  𝑋 ) | 
						
							| 698 | 697 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑋 } )  →  𝑥  =  𝑋 ) | 
						
							| 699 | 625 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑋 } )  →  𝑋  ≤  𝑋 ) | 
						
							| 700 | 698 699 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑋 } )  →  𝑥  ≤  𝑋 ) | 
						
							| 701 | 700 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∧  𝑥  ∈  { 𝑋 } )  →  𝑥  ≤  𝑋 ) | 
						
							| 702 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∧  ¬  𝑥  ∈  { 𝑋 } )  →  𝜑 ) | 
						
							| 703 |  | elunnel2 | ⊢ ( ( 𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ∧  ¬  𝑥  ∈  { 𝑋 } )  →  𝑥  ∈  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) | 
						
							| 704 | 703 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∧  ¬  𝑥  ∈  { 𝑋 } )  →  𝑥  ∈  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) ) | 
						
							| 705 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  →  𝑥  ∈  ( -∞ (,) 𝑋 ) ) | 
						
							| 706 | 704 705 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∧  ¬  𝑥  ∈  { 𝑋 } )  →  𝑥  ∈  ( -∞ (,) 𝑋 ) ) | 
						
							| 707 |  | elioore | ⊢ ( 𝑥  ∈  ( -∞ (,) 𝑋 )  →  𝑥  ∈  ℝ ) | 
						
							| 708 | 707 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 709 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 710 | 199 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 711 | 455 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 712 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑥  ∈  ( -∞ (,) 𝑋 ) ) | 
						
							| 713 |  | iooltub | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝑋  ∈  ℝ*  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑥  <  𝑋 ) | 
						
							| 714 | 710 711 712 713 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑥  <  𝑋 ) | 
						
							| 715 | 708 709 714 | ltled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( -∞ (,) 𝑋 ) )  →  𝑥  ≤  𝑋 ) | 
						
							| 716 | 702 706 715 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∧  ¬  𝑥  ∈  { 𝑋 } )  →  𝑥  ≤  𝑋 ) | 
						
							| 717 | 701 716 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  →  𝑥  ≤  𝑋 ) | 
						
							| 718 | 696 717 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  𝑥  ≤  𝑋 ) | 
						
							| 719 | 718 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  𝑥  ≤  𝑋 ) | 
						
							| 720 | 683 684 689 695 719 | eliocd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 721 | 682 720 | impbida | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  ↔  𝑥  ∈  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ) | 
						
							| 722 | 721 | eqrdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  =  ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) +∞ )  ∩  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 723 | 606 8 | sstrid | ⊢ ( 𝜑  →  ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ⊆  ℝ ) | 
						
							| 724 | 14 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  ℝ ) | 
						
							| 725 | 723 724 | unssd | ⊢ ( 𝜑  →  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ⊆  ℝ ) | 
						
							| 726 | 725 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ⊆  ℝ ) | 
						
							| 727 | 236 369 | rerest | ⊢ ( ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } )  ⊆  ℝ  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 728 | 726 727 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 729 | 641 722 728 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) | 
						
							| 730 |  | isopn3i | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) )  ∈  Top  ∧  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ‘ ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 731 | 636 729 730 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ‘ ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) )  =  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 ) ) | 
						
							| 732 | 630 731 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,] 𝑋 )  =  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ‘ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ∪  { 𝑋 } ) ) ) | 
						
							| 733 | 627 732 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑋  ∈  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( -∞ (,) 𝑋 )  ∩  𝐷 )  ∪  { 𝑋 } ) ) ) ‘ ( ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 )  ∪  { 𝑋 } ) ) ) | 
						
							| 734 | 608 614 615 236 616 733 | limcres | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  limℂ  𝑋 ) ) | 
						
							| 735 | 734 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  limℂ  𝑋 )  =  ( ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 736 | 614 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  =  ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) ) ) | 
						
							| 737 | 736 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐹  ↾  ( ( -∞ (,) 𝑋 )  ∩  𝐷 ) )  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 738 | 605 735 737 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( ( 𝑄 ‘ 𝑖 )  −  ( 𝑍 ‘ 𝑋 ) ) (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 ) ) | 
						
							| 739 | 380 597 738 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 740 | 739 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) ) | 
						
							| 741 | 179 740 | mpd | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  =  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 742 | 126 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 743 | 12 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 744 | 13 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 745 |  | eqid | ⊢ if ( ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝐸 ‘ 𝑋 ) ) )  =  if ( ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 746 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 747 | 216 214 742 743 744 216 238 241 222 745 746 | fourierdlem33 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  if ( ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝐸 ‘ 𝑋 ) ) )  ∈  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 748 | 222 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) ) ) | 
						
							| 749 | 748 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 750 | 747 749 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  if ( ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝐸 ‘ 𝑋 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) ) ) | 
						
							| 751 |  | ne0i | ⊢ ( if ( ( 𝐸 ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝐸 ‘ 𝑋 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  ≠  ∅ ) | 
						
							| 752 | 750 751 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  ≠  ∅ ) | 
						
							| 753 | 380 752 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  ≠  ∅ ) | 
						
							| 754 | 753 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐸 ‘ 𝑋 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  ≠  ∅ ) ) | 
						
							| 755 | 179 754 | mpd | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( -∞ (,) ( 𝐸 ‘ 𝑋 ) ) )  limℂ  ( 𝐸 ‘ 𝑋 ) )  ≠  ∅ ) | 
						
							| 756 | 741 755 | eqnetrd | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅ ) |