| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iooshift.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
iooshift.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
iooshift.3 |
|- ( ph -> T e. RR ) |
| 4 |
|
eqeq1 |
|- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
| 5 |
4
|
rexbidv |
|- ( w = x -> ( E. z e. ( A (,) B ) w = ( z + T ) <-> E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 6 |
5
|
elrab |
|- ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } <-> ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 7 |
|
simprr |
|- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> E. z e. ( A (,) B ) x = ( z + T ) ) |
| 8 |
|
nfv |
|- F/ z ph |
| 9 |
|
nfv |
|- F/ z x e. CC |
| 10 |
|
nfre1 |
|- F/ z E. z e. ( A (,) B ) x = ( z + T ) |
| 11 |
9 10
|
nfan |
|- F/ z ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) |
| 12 |
8 11
|
nfan |
|- F/ z ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 13 |
|
nfv |
|- F/ z x e. ( ( A + T ) (,) ( B + T ) ) |
| 14 |
|
simp3 |
|- ( ( ph /\ z e. ( A (,) B ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
| 15 |
1 3
|
readdcld |
|- ( ph -> ( A + T ) e. RR ) |
| 16 |
15
|
rexrd |
|- ( ph -> ( A + T ) e. RR* ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( A + T ) e. RR* ) |
| 18 |
2 3
|
readdcld |
|- ( ph -> ( B + T ) e. RR ) |
| 19 |
18
|
rexrd |
|- ( ph -> ( B + T ) e. RR* ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( B + T ) e. RR* ) |
| 21 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 22 |
21
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 23 |
22
|
sselda |
|- ( ( ph /\ z e. ( A (,) B ) ) -> z e. RR ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ z e. ( A (,) B ) ) -> T e. RR ) |
| 25 |
23 24
|
readdcld |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( z + T ) e. RR ) |
| 26 |
1
|
adantr |
|- ( ( ph /\ z e. ( A (,) B ) ) -> A e. RR ) |
| 27 |
26
|
rexrd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> A e. RR* ) |
| 28 |
2
|
adantr |
|- ( ( ph /\ z e. ( A (,) B ) ) -> B e. RR ) |
| 29 |
28
|
rexrd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> B e. RR* ) |
| 30 |
|
simpr |
|- ( ( ph /\ z e. ( A (,) B ) ) -> z e. ( A (,) B ) ) |
| 31 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ z e. ( A (,) B ) ) -> A < z ) |
| 32 |
27 29 30 31
|
syl3anc |
|- ( ( ph /\ z e. ( A (,) B ) ) -> A < z ) |
| 33 |
26 23 24 32
|
ltadd1dd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( A + T ) < ( z + T ) ) |
| 34 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ z e. ( A (,) B ) ) -> z < B ) |
| 35 |
27 29 30 34
|
syl3anc |
|- ( ( ph /\ z e. ( A (,) B ) ) -> z < B ) |
| 36 |
23 28 24 35
|
ltadd1dd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( z + T ) < ( B + T ) ) |
| 37 |
17 20 25 33 36
|
eliood |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( z + T ) e. ( ( A + T ) (,) ( B + T ) ) ) |
| 38 |
37
|
3adant3 |
|- ( ( ph /\ z e. ( A (,) B ) /\ x = ( z + T ) ) -> ( z + T ) e. ( ( A + T ) (,) ( B + T ) ) ) |
| 39 |
14 38
|
eqeltrd |
|- ( ( ph /\ z e. ( A (,) B ) /\ x = ( z + T ) ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 40 |
39
|
3exp |
|- ( ph -> ( z e. ( A (,) B ) -> ( x = ( z + T ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> ( z e. ( A (,) B ) -> ( x = ( z + T ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) ) ) |
| 42 |
12 13 41
|
rexlimd |
|- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> ( E. z e. ( A (,) B ) x = ( z + T ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) ) |
| 43 |
7 42
|
mpd |
|- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 44 |
6 43
|
sylan2b |
|- ( ( ph /\ x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 45 |
|
elioore |
|- ( x e. ( ( A + T ) (,) ( B + T ) ) -> x e. RR ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. RR ) |
| 47 |
46
|
recnd |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. CC ) |
| 48 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> A e. RR* ) |
| 50 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> B e. RR* ) |
| 52 |
3
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> T e. RR ) |
| 53 |
46 52
|
resubcld |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) e. RR ) |
| 54 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 55 |
3
|
recnd |
|- ( ph -> T e. CC ) |
| 56 |
54 55
|
pncand |
|- ( ph -> ( ( A + T ) - T ) = A ) |
| 57 |
56
|
eqcomd |
|- ( ph -> A = ( ( A + T ) - T ) ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> A = ( ( A + T ) - T ) ) |
| 59 |
15
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) e. RR ) |
| 60 |
16
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) e. RR* ) |
| 61 |
19
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( B + T ) e. RR* ) |
| 62 |
|
simpr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 63 |
|
ioogtlb |
|- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) < x ) |
| 64 |
60 61 62 63
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) < x ) |
| 65 |
59 46 52 64
|
ltsub1dd |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( ( A + T ) - T ) < ( x - T ) ) |
| 66 |
58 65
|
eqbrtrd |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> A < ( x - T ) ) |
| 67 |
18
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( B + T ) e. RR ) |
| 68 |
|
iooltub |
|- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x < ( B + T ) ) |
| 69 |
60 61 62 68
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x < ( B + T ) ) |
| 70 |
46 67 52 69
|
ltsub1dd |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) < ( ( B + T ) - T ) ) |
| 71 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 72 |
71 55
|
pncand |
|- ( ph -> ( ( B + T ) - T ) = B ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( ( B + T ) - T ) = B ) |
| 74 |
70 73
|
breqtrd |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) < B ) |
| 75 |
49 51 53 66 74
|
eliood |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) e. ( A (,) B ) ) |
| 76 |
55
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> T e. CC ) |
| 77 |
47 76
|
npcand |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( ( x - T ) + T ) = x ) |
| 78 |
77
|
eqcomd |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x = ( ( x - T ) + T ) ) |
| 79 |
|
oveq1 |
|- ( z = ( x - T ) -> ( z + T ) = ( ( x - T ) + T ) ) |
| 80 |
79
|
rspceeqv |
|- ( ( ( x - T ) e. ( A (,) B ) /\ x = ( ( x - T ) + T ) ) -> E. z e. ( A (,) B ) x = ( z + T ) ) |
| 81 |
75 78 80
|
syl2anc |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> E. z e. ( A (,) B ) x = ( z + T ) ) |
| 82 |
47 81 6
|
sylanbrc |
|- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |
| 83 |
44 82
|
impbida |
|- ( ph -> ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } <-> x e. ( ( A + T ) (,) ( B + T ) ) ) ) |
| 84 |
83
|
eqrdv |
|- ( ph -> { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } = ( ( A + T ) (,) ( B + T ) ) ) |
| 85 |
84
|
eqcomd |
|- ( ph -> ( ( A + T ) (,) ( B + T ) ) = { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |