| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem82.1 |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 2 |
|
fourierdlem82.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
fourierdlem82.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
fourierdlem82.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 5 |
|
fourierdlem82.5 |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 6 |
|
fourierdlem82.6 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 7 |
|
fourierdlem82.7 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 8 |
|
fourierdlem82.8 |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 9 |
|
fourierdlem82.9 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 10 |
2 3 4
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 11 |
2 3 9 10
|
lesub1dd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ≤ ( 𝐵 − 𝑋 ) ) |
| 12 |
11
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 − 𝑋 ) → ( 𝐵 − 𝑋 ) ] ( 𝐺 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ∫ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ( 𝐺 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 13 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = 𝑅 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = 𝑅 ) |
| 15 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 17 |
14 16
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 19 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 20 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = 𝐿 ) |
| 21 |
19 20
|
sylan9eq |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = 𝐿 ) |
| 22 |
21
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = 𝐿 ) |
| 23 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 24 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
| 25 |
23 24
|
sylan9eq |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝐿 ) |
| 26 |
25
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝐿 ) |
| 27 |
22 26
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 30 |
19
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 31 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 33 |
23
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 35 |
34
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 36 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 37 |
36
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 39 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 41 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 42 |
38 39 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
| 44 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 45 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ ℝ ) |
| 46 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 47 |
38 39 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 48 |
40 47
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 49 |
48
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 ≤ 𝑥 ) |
| 51 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝐴 → 𝑥 ≠ 𝐴 ) |
| 52 |
51
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ≠ 𝐴 ) |
| 53 |
44 45 50 52
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 < 𝑥 ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 < 𝑥 ) |
| 55 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
| 56 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 57 |
48
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ≤ 𝐵 ) |
| 59 |
|
nesym |
⊢ ( 𝐵 ≠ 𝑥 ↔ ¬ 𝑥 = 𝐵 ) |
| 60 |
59
|
biimpri |
⊢ ( ¬ 𝑥 = 𝐵 → 𝐵 ≠ 𝑥 ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ≠ 𝑥 ) |
| 62 |
55 56 58 61
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐵 ) |
| 63 |
62
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐵 ) |
| 64 |
35 37 43 54 63
|
eliood |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 65 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 67 |
32 33 66
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 68 |
29 30 67
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 69 |
27 68
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 70 |
18 69
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 71 |
70
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 72 |
1 71
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 74 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑡 ) → ( 𝑥 = 𝐴 ↔ ( 𝑋 + 𝑡 ) = 𝐴 ) ) |
| 75 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑋 + 𝑡 ) → ( 𝑥 = 𝐵 ↔ ( 𝑋 + 𝑡 ) = 𝐵 ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑋 + 𝑡 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 77 |
75 76
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝑋 + 𝑡 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = if ( ( 𝑋 + 𝑡 ) = 𝐵 , 𝐿 , ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) |
| 78 |
74 77
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝑋 + 𝑡 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( ( 𝑋 + 𝑡 ) = 𝐴 , 𝑅 , if ( ( 𝑋 + 𝑡 ) = 𝐵 , 𝐿 , ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) ) |
| 79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝐴 ∈ ℝ ) |
| 80 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) |
| 81 |
2 9
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 82 |
81
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ* ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ* ) |
| 84 |
3 9
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 85 |
84
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ* ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ* ) |
| 87 |
|
elioo2 |
⊢ ( ( ( 𝐴 − 𝑋 ) ∈ ℝ* ∧ ( 𝐵 − 𝑋 ) ∈ ℝ* ) → ( 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) < 𝑡 ∧ 𝑡 < ( 𝐵 − 𝑋 ) ) ) ) |
| 88 |
83 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) < 𝑡 ∧ 𝑡 < ( 𝐵 − 𝑋 ) ) ) ) |
| 89 |
80 88
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑡 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) < 𝑡 ∧ 𝑡 < ( 𝐵 − 𝑋 ) ) ) |
| 90 |
89
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) < 𝑡 ) |
| 91 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 92 |
89
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝑡 ∈ ℝ ) |
| 93 |
79 91 92
|
ltsubadd2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( ( 𝐴 − 𝑋 ) < 𝑡 ↔ 𝐴 < ( 𝑋 + 𝑡 ) ) ) |
| 94 |
90 93
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝐴 < ( 𝑋 + 𝑡 ) ) |
| 95 |
79 94
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ≠ 𝐴 ) |
| 96 |
95
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ¬ ( 𝑋 + 𝑡 ) = 𝐴 ) |
| 97 |
96
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → if ( ( 𝑋 + 𝑡 ) = 𝐴 , 𝑅 , if ( ( 𝑋 + 𝑡 ) = 𝐵 , 𝐿 , ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) = if ( ( 𝑋 + 𝑡 ) = 𝐵 , 𝐿 , ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) |
| 98 |
91 92
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ℝ ) |
| 99 |
89
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝑡 < ( 𝐵 − 𝑋 ) ) |
| 100 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝐵 ∈ ℝ ) |
| 101 |
91 92 100
|
ltaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( ( 𝑋 + 𝑡 ) < 𝐵 ↔ 𝑡 < ( 𝐵 − 𝑋 ) ) ) |
| 102 |
99 101
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) < 𝐵 ) |
| 103 |
98 102
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ≠ 𝐵 ) |
| 104 |
103
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ¬ ( 𝑋 + 𝑡 ) = 𝐵 ) |
| 105 |
104
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → if ( ( 𝑋 + 𝑡 ) = 𝐵 , 𝐿 , ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 106 |
97 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → if ( ( 𝑋 + 𝑡 ) = 𝐴 , 𝑅 , if ( ( 𝑋 + 𝑡 ) = 𝐵 , 𝐿 , ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 107 |
78 106
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) ∧ 𝑥 = ( 𝑋 + 𝑡 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 108 |
79 98 94
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → 𝐴 ≤ ( 𝑋 + 𝑡 ) ) |
| 109 |
98 100 102
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ≤ 𝐵 ) |
| 110 |
79 100 98 108 109
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 111 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → Fun 𝐹 ) |
| 113 |
5
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 114 |
113
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 116 |
110 115
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ dom 𝐹 ) |
| 117 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ ( 𝑋 + 𝑡 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ran 𝐹 ) |
| 118 |
112 116 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ran 𝐹 ) |
| 119 |
73 107 110 118
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ) → ( 𝐺 ‘ ( 𝑋 + 𝑡 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 120 |
119
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ( 𝐺 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ∫ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 121 |
5
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ran 𝐹 ⊆ ℂ ) |
| 123 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → Fun 𝐹 ) |
| 124 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐴 ∈ ℝ ) |
| 125 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐵 ∈ ℝ ) |
| 126 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 127 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 128 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 129 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 130 |
|
eliccre |
⊢ ( ( ( 𝐴 − 𝑋 ) ∈ ℝ ∧ ( 𝐵 − 𝑋 ) ∈ ℝ ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑡 ∈ ℝ ) |
| 131 |
127 128 129 130
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑡 ∈ ℝ ) |
| 132 |
126 131
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ℝ ) |
| 133 |
|
elicc2 |
⊢ ( ( ( 𝐴 − 𝑋 ) ∈ ℝ ∧ ( 𝐵 − 𝑋 ) ∈ ℝ ) → ( 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) ≤ 𝑡 ∧ 𝑡 ≤ ( 𝐵 − 𝑋 ) ) ) ) |
| 134 |
127 128 133
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) ≤ 𝑡 ∧ 𝑡 ≤ ( 𝐵 − 𝑋 ) ) ) ) |
| 135 |
129 134
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑡 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) ≤ 𝑡 ∧ 𝑡 ≤ ( 𝐵 − 𝑋 ) ) ) |
| 136 |
135
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) ≤ 𝑡 ) |
| 137 |
124 126 131
|
lesubadd2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( ( 𝐴 − 𝑋 ) ≤ 𝑡 ↔ 𝐴 ≤ ( 𝑋 + 𝑡 ) ) ) |
| 138 |
136 137
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐴 ≤ ( 𝑋 + 𝑡 ) ) |
| 139 |
135
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑡 ≤ ( 𝐵 − 𝑋 ) ) |
| 140 |
126 131 125
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( ( 𝑋 + 𝑡 ) ≤ 𝐵 ↔ 𝑡 ≤ ( 𝐵 − 𝑋 ) ) ) |
| 141 |
139 140
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ≤ 𝐵 ) |
| 142 |
124 125 132 138 141
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 143 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 144 |
142 143
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ dom 𝐹 ) |
| 145 |
123 144 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ran 𝐹 ) |
| 146 |
122 145
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ℂ ) |
| 147 |
81 84 146
|
itgioo |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) (,) ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 148 |
12 120 147
|
3eqtrrd |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ⨜ [ ( 𝐴 − 𝑋 ) → ( 𝐵 − 𝑋 ) ] ( 𝐺 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 149 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 150 |
2 3 4 5
|
limcicciooub |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
| 151 |
7 150
|
eleqtrrd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 152 |
2 3 4 5
|
limciccioolb |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |
| 153 |
8 152
|
eleqtrrd |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| 154 |
149 1 2 3 6 151 153
|
cncfiooicc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 155 |
2 3 10 9 154
|
itgsbtaddcnst |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 − 𝑋 ) → ( 𝐵 − 𝑋 ) ] ( 𝐺 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ⨜ [ 𝐴 → 𝐵 ] ( 𝐺 ‘ 𝑠 ) d 𝑠 ) |
| 156 |
10
|
ditgpos |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑠 ) d 𝑠 ) |
| 157 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑡 ) ) |
| 158 |
157
|
cbvitgv |
⊢ ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑡 ) d 𝑡 |
| 159 |
1
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) ) |
| 160 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝐴 ∈ ℝ ) |
| 161 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 162 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝐴 ∈ ℝ* ) |
| 163 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝐵 ∈ ℝ* ) |
| 164 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 < 𝑡 ∧ 𝑡 < 𝐵 ) ) ) |
| 165 |
162 163 164
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 < 𝑡 ∧ 𝑡 < 𝐵 ) ) ) |
| 166 |
161 165
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ( 𝑡 ∈ ℝ ∧ 𝐴 < 𝑡 ∧ 𝑡 < 𝐵 ) ) |
| 167 |
166
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝐴 < 𝑡 ) |
| 168 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑥 = 𝑡 ) |
| 169 |
167 168
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝐴 < 𝑥 ) |
| 170 |
160 169
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑥 ≠ 𝐴 ) |
| 171 |
170
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ¬ 𝑥 = 𝐴 ) |
| 172 |
171
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 173 |
166
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑡 ∈ ℝ ) |
| 174 |
168 173
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑥 ∈ ℝ ) |
| 175 |
166
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑡 < 𝐵 ) |
| 176 |
168 175
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑥 < 𝐵 ) |
| 177 |
174 176
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑥 ≠ 𝐵 ) |
| 178 |
177
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ¬ 𝑥 = 𝐵 ) |
| 179 |
178
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 180 |
168 161
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 181 |
180 65
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 182 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 183 |
182
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 184 |
181 183
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 185 |
172 179 184
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝑡 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑡 ) ) |
| 186 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 187 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 188 |
186 187
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 189 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → Fun 𝐹 ) |
| 190 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 191 |
188 190
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑡 ∈ dom 𝐹 ) |
| 192 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑡 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑡 ) ∈ ran 𝐹 ) |
| 193 |
189 191 192
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ran 𝐹 ) |
| 194 |
159 185 188 193
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 195 |
194
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 196 |
158 195
|
eqtrid |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 197 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 198 |
2 3 197
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 199 |
156 196 198
|
3eqtrd |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 200 |
148 155 199
|
3eqtrrd |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |