| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsbtaddcnst.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
itgsbtaddcnst.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
itgsbtaddcnst.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
itgsbtaddcnst.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 5 |
|
itgsbtaddcnst.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 6 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 7 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ℂ ) |
| 9 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑋 ∈ ℂ ) |
| 11 |
8 10
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 + - 𝑋 ) = ( 𝑡 − 𝑋 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 − 𝑋 ) = ( 𝑡 + - 𝑋 ) ) |
| 13 |
12
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑋 ∈ ℝ ) |
| 16 |
14 15
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 18 |
17 15
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 19 |
7 15
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 − 𝑋 ) ∈ ℝ ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 21 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 23 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵 ) ) ) |
| 25 |
20 24
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵 ) ) |
| 26 |
25
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑡 ) |
| 27 |
14 7 15 26
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − 𝑋 ) ≤ ( 𝑡 − 𝑋 ) ) |
| 28 |
25
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ≤ 𝐵 ) |
| 29 |
7 17 15 28
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 − 𝑋 ) ≤ ( 𝐵 − 𝑋 ) ) |
| 30 |
16 18 19 27 29
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 − 𝑋 ) ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 31 |
30
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 32 |
13 31
|
feq1dd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 33 |
1 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 34 |
2 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 35 |
33 34
|
iccssred |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ⊆ ℝ ) |
| 36 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 37 |
35 36
|
sstrdi |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ⊆ ℂ ) |
| 38 |
6 36
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 39 |
38
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ) |
| 40 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 41 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 42 |
40 40 41
|
mp2an |
⊢ ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) |
| 43 |
42
|
a1i |
⊢ ( 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 44 |
40
|
a1i |
⊢ ( 𝑋 ∈ ℂ → ℂ ⊆ ℂ ) |
| 45 |
|
id |
⊢ ( 𝑋 ∈ ℂ → 𝑋 ∈ ℂ ) |
| 46 |
44 45 44
|
constcncfg |
⊢ ( 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ 𝑋 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 47 |
43 46
|
subcncf |
⊢ ( 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 48 |
9 47
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 49 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 50 |
38 48 49
|
sylc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 − 𝑋 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 51 |
39 50
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 52 |
13 51
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 53 |
|
cncfcdm |
⊢ ( ( ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ⊆ ℂ ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) ↔ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) ) |
| 54 |
37 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) ↔ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) ) |
| 55 |
32 54
|
mpbird |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 + - 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) ) |
| 56 |
13 55
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) ) |
| 57 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) |
| 58 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → 𝑠 ∈ ℂ ) |
| 60 |
58 59
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → ( 𝑋 + 𝑠 ) = ( 𝑠 + 𝑋 ) ) |
| 61 |
60
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) ) |
| 62 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) |
| 63 |
62
|
addccncf |
⊢ ( 𝑋 ∈ ℂ → ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 64 |
9 63
|
syl |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 65 |
61 64
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 66 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐴 ∈ ℝ ) |
| 67 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐵 ∈ ℝ ) |
| 68 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 69 |
35
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑠 ∈ ℝ ) |
| 70 |
68 69
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 72 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 73 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 74 |
|
elicc2 |
⊢ ( ( ( 𝐴 − 𝑋 ) ∈ ℝ ∧ ( 𝐵 − 𝑋 ) ∈ ℝ ) → ( 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↔ ( 𝑠 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) ≤ 𝑠 ∧ 𝑠 ≤ ( 𝐵 − 𝑋 ) ) ) ) |
| 75 |
72 73 74
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↔ ( 𝑠 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) ≤ 𝑠 ∧ 𝑠 ≤ ( 𝐵 − 𝑋 ) ) ) ) |
| 76 |
71 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑠 ∈ ℝ ∧ ( 𝐴 − 𝑋 ) ≤ 𝑠 ∧ 𝑠 ≤ ( 𝐵 − 𝑋 ) ) ) |
| 77 |
76
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) ≤ 𝑠 ) |
| 78 |
66 68 69
|
lesubadd2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( ( 𝐴 − 𝑋 ) ≤ 𝑠 ↔ 𝐴 ≤ ( 𝑋 + 𝑠 ) ) ) |
| 79 |
77 78
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐴 ≤ ( 𝑋 + 𝑠 ) ) |
| 80 |
76
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑠 ≤ ( 𝐵 − 𝑋 ) ) |
| 81 |
68 69 67
|
leaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( ( 𝑋 + 𝑠 ) ≤ 𝐵 ↔ 𝑠 ≤ ( 𝐵 − 𝑋 ) ) ) |
| 82 |
80 81
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ≤ 𝐵 ) |
| 83 |
66 67 70 79 82
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 84 |
57 65 37 38 83
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) –cn→ ( 𝐴 [,] 𝐵 ) ) ) |
| 85 |
84 5
|
cncfcompt |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) –cn→ ℂ ) ) |
| 86 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 87 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 88 |
|
cncfmptc |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 89 |
86 87 40 88
|
mp3an |
⊢ ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) |
| 90 |
89
|
a1i |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 91 |
|
fconstmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) × { 1 } ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) |
| 92 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 93 |
92
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 94 |
|
volioo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 95 |
1 2 3 94
|
syl3anc |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 96 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 97 |
95 96
|
eqeltrd |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 98 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 99 |
|
iblconst |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 ) |
| 100 |
93 97 98 99
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) × { 1 } ) ∈ 𝐿1 ) |
| 101 |
91 100
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ 𝐿1 ) |
| 102 |
90 101
|
elind |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ∈ ( ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
| 103 |
36
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 104 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 − 𝑋 ) ∈ ℂ ) |
| 105 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 106 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 107 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 108 |
21 107
|
syl |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 109 |
103 6 104 105 106 108
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ) = ( ℝ D ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ) ) |
| 110 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 111 |
110
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 112 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 113 |
112
|
sseli |
⊢ ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) → 𝑡 ∈ ℝ ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑡 ∈ ℝ ) |
| 115 |
114
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑡 ∈ ℂ ) |
| 116 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℂ ) |
| 117 |
103
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
| 118 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℂ ) |
| 119 |
111
|
dvmptid |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ℝ ↦ 𝑡 ) ) = ( 𝑡 ∈ ℝ ↦ 1 ) ) |
| 120 |
112
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 121 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
| 122 |
121
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
| 123 |
111 117 118 119 120 105 106 122
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑡 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 124 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ ℂ ) |
| 125 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℂ ) |
| 126 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
| 127 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 0 ∈ ℂ ) |
| 128 |
111 9
|
dvmptc |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ℝ ↦ 𝑋 ) ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
| 129 |
111 126 127 128 120 105 106 122
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑋 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 130 |
111 115 116 123 124 125 129
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 − 0 ) ) ) |
| 131 |
116
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 − 0 ) = 1 ) |
| 132 |
131
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 − 0 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 133 |
109 130 132
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 − 𝑋 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 134 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑡 − 𝑋 ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) |
| 135 |
134
|
fveq2d |
⊢ ( 𝑠 = ( 𝑡 − 𝑋 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) ) |
| 136 |
|
oveq1 |
⊢ ( 𝑡 = 𝐴 → ( 𝑡 − 𝑋 ) = ( 𝐴 − 𝑋 ) ) |
| 137 |
|
oveq1 |
⊢ ( 𝑡 = 𝐵 → ( 𝑡 − 𝑋 ) = ( 𝐵 − 𝑋 ) ) |
| 138 |
1 2 3 56 85 102 133 135 136 137 33 34
|
itgsubsticc |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 − 𝑋 ) → ( 𝐵 − 𝑋 ) ] ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 = ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐹 ‘ ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) · 1 ) d 𝑡 ) |
| 139 |
124 115
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + ( 𝑡 − 𝑋 ) ) = 𝑡 ) |
| 140 |
139
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) = ( 𝐹 ‘ 𝑡 ) ) |
| 141 |
140
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) · 1 ) = ( ( 𝐹 ‘ 𝑡 ) · 1 ) ) |
| 142 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 143 |
5 142
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 145 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 146 |
145
|
sseli |
⊢ ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) → 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 147 |
146
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 148 |
144 147
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 149 |
148
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝑡 ) · 1 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 150 |
141 149
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) · 1 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 151 |
3 150
|
ditgeq3d |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( ( 𝐹 ‘ ( 𝑋 + ( 𝑡 − 𝑋 ) ) ) · 1 ) d 𝑡 = ⨜ [ 𝐴 → 𝐵 ] ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 152 |
138 151
|
eqtrd |
⊢ ( 𝜑 → ⨜ [ ( 𝐴 − 𝑋 ) → ( 𝐵 − 𝑋 ) ] ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 = ⨜ [ 𝐴 → 𝐵 ] ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |