| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsbtaddcnst.a |
|
| 2 |
|
itgsbtaddcnst.b |
|
| 3 |
|
itgsbtaddcnst.aleb |
|
| 4 |
|
itgsbtaddcnst.x |
|
| 5 |
|
itgsbtaddcnst.f |
|
| 6 |
1 2
|
iccssred |
|
| 7 |
6
|
sselda |
|
| 8 |
7
|
recnd |
|
| 9 |
4
|
recnd |
|
| 10 |
9
|
adantr |
|
| 11 |
8 10
|
negsubd |
|
| 12 |
11
|
eqcomd |
|
| 13 |
12
|
mpteq2dva |
|
| 14 |
1
|
adantr |
|
| 15 |
4
|
adantr |
|
| 16 |
14 15
|
resubcld |
|
| 17 |
2
|
adantr |
|
| 18 |
17 15
|
resubcld |
|
| 19 |
7 15
|
resubcld |
|
| 20 |
|
simpr |
|
| 21 |
1 2
|
jca |
|
| 22 |
21
|
adantr |
|
| 23 |
|
elicc2 |
|
| 24 |
22 23
|
syl |
|
| 25 |
20 24
|
mpbid |
|
| 26 |
25
|
simp2d |
|
| 27 |
14 7 15 26
|
lesub1dd |
|
| 28 |
25
|
simp3d |
|
| 29 |
7 17 15 28
|
lesub1dd |
|
| 30 |
16 18 19 27 29
|
eliccd |
|
| 31 |
30
|
fmpttd |
|
| 32 |
13 31
|
feq1dd |
|
| 33 |
1 4
|
resubcld |
|
| 34 |
2 4
|
resubcld |
|
| 35 |
33 34
|
iccssred |
|
| 36 |
|
ax-resscn |
|
| 37 |
35 36
|
sstrdi |
|
| 38 |
6 36
|
sstrdi |
|
| 39 |
38
|
resmptd |
|
| 40 |
|
ssid |
|
| 41 |
|
cncfmptid |
|
| 42 |
40 40 41
|
mp2an |
|
| 43 |
42
|
a1i |
|
| 44 |
40
|
a1i |
|
| 45 |
|
id |
|
| 46 |
44 45 44
|
constcncfg |
|
| 47 |
43 46
|
subcncf |
|
| 48 |
9 47
|
syl |
|
| 49 |
|
rescncf |
|
| 50 |
38 48 49
|
sylc |
|
| 51 |
39 50
|
eqeltrrd |
|
| 52 |
13 51
|
eqeltrrd |
|
| 53 |
|
cncfcdm |
|
| 54 |
37 52 53
|
syl2anc |
|
| 55 |
32 54
|
mpbird |
|
| 56 |
13 55
|
eqeltrd |
|
| 57 |
|
eqid |
|
| 58 |
9
|
adantr |
|
| 59 |
|
simpr |
|
| 60 |
58 59
|
addcomd |
|
| 61 |
60
|
mpteq2dva |
|
| 62 |
|
eqid |
|
| 63 |
62
|
addccncf |
|
| 64 |
9 63
|
syl |
|
| 65 |
61 64
|
eqeltrd |
|
| 66 |
1
|
adantr |
|
| 67 |
2
|
adantr |
|
| 68 |
4
|
adantr |
|
| 69 |
35
|
sselda |
|
| 70 |
68 69
|
readdcld |
|
| 71 |
|
simpr |
|
| 72 |
33
|
adantr |
|
| 73 |
34
|
adantr |
|
| 74 |
|
elicc2 |
|
| 75 |
72 73 74
|
syl2anc |
|
| 76 |
71 75
|
mpbid |
|
| 77 |
76
|
simp2d |
|
| 78 |
66 68 69
|
lesubadd2d |
|
| 79 |
77 78
|
mpbid |
|
| 80 |
76
|
simp3d |
|
| 81 |
68 69 67
|
leaddsub2d |
|
| 82 |
80 81
|
mpbird |
|
| 83 |
66 67 70 79 82
|
eliccd |
|
| 84 |
57 65 37 38 83
|
cncfmptssg |
|
| 85 |
84 5
|
cncfcompt |
|
| 86 |
|
ax-1cn |
|
| 87 |
|
ioosscn |
|
| 88 |
|
cncfmptc |
|
| 89 |
86 87 40 88
|
mp3an |
|
| 90 |
89
|
a1i |
|
| 91 |
|
fconstmpt |
|
| 92 |
|
ioombl |
|
| 93 |
92
|
a1i |
|
| 94 |
|
volioo |
|
| 95 |
1 2 3 94
|
syl3anc |
|
| 96 |
2 1
|
resubcld |
|
| 97 |
95 96
|
eqeltrd |
|
| 98 |
|
1cnd |
|
| 99 |
|
iblconst |
|
| 100 |
93 97 98 99
|
syl3anc |
|
| 101 |
91 100
|
eqeltrrid |
|
| 102 |
90 101
|
elind |
|
| 103 |
36
|
a1i |
|
| 104 |
19
|
recnd |
|
| 105 |
|
tgioo4 |
|
| 106 |
|
eqid |
|
| 107 |
|
iccntr |
|
| 108 |
21 107
|
syl |
|
| 109 |
103 6 104 105 106 108
|
dvmptntr |
|
| 110 |
|
reelprrecn |
|
| 111 |
110
|
a1i |
|
| 112 |
|
ioossre |
|
| 113 |
112
|
sseli |
|
| 114 |
113
|
adantl |
|
| 115 |
114
|
recnd |
|
| 116 |
|
1cnd |
|
| 117 |
103
|
sselda |
|
| 118 |
|
1cnd |
|
| 119 |
111
|
dvmptid |
|
| 120 |
112
|
a1i |
|
| 121 |
|
iooretop |
|
| 122 |
121
|
a1i |
|
| 123 |
111 117 118 119 120 105 106 122
|
dvmptres |
|
| 124 |
9
|
adantr |
|
| 125 |
|
0cnd |
|
| 126 |
9
|
adantr |
|
| 127 |
|
0cnd |
|
| 128 |
111 9
|
dvmptc |
|
| 129 |
111 126 127 128 120 105 106 122
|
dvmptres |
|
| 130 |
111 115 116 123 124 125 129
|
dvmptsub |
|
| 131 |
116
|
subid1d |
|
| 132 |
131
|
mpteq2dva |
|
| 133 |
109 130 132
|
3eqtrd |
|
| 134 |
|
oveq2 |
|
| 135 |
134
|
fveq2d |
|
| 136 |
|
oveq1 |
|
| 137 |
|
oveq1 |
|
| 138 |
1 2 3 56 85 102 133 135 136 137 33 34
|
itgsubsticc |
|
| 139 |
124 115
|
pncan3d |
|
| 140 |
139
|
fveq2d |
|
| 141 |
140
|
oveq1d |
|
| 142 |
|
cncff |
|
| 143 |
5 142
|
syl |
|
| 144 |
143
|
adantr |
|
| 145 |
|
ioossicc |
|
| 146 |
145
|
sseli |
|
| 147 |
146
|
adantl |
|
| 148 |
144 147
|
ffvelcdmd |
|
| 149 |
148
|
mulridd |
|
| 150 |
141 149
|
eqtrd |
|
| 151 |
3 150
|
ditgeq3d |
|
| 152 |
138 151
|
eqtrd |
|