Metamath Proof Explorer


Theorem dvmptntr

Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptntr.s φS
dvmptntr.x φXS
dvmptntr.a φxXA
dvmptntr.j J=K𝑡S
dvmptntr.k K=TopOpenfld
dvmptntr.i φintJX=Y
Assertion dvmptntr φdxXAdSx=dxYAdSx

Proof

Step Hyp Ref Expression
1 dvmptntr.s φS
2 dvmptntr.x φXS
3 dvmptntr.a φxXA
4 dvmptntr.j J=K𝑡S
5 dvmptntr.k K=TopOpenfld
6 dvmptntr.i φintJX=Y
7 5 cnfldtopon KTopOn
8 resttopon KTopOnSK𝑡STopOnS
9 7 1 8 sylancr φK𝑡STopOnS
10 4 9 eqeltrid φJTopOnS
11 topontop JTopOnSJTop
12 10 11 syl φJTop
13 toponuni JTopOnSS=J
14 10 13 syl φS=J
15 2 14 sseqtrd φXJ
16 eqid J=J
17 16 ntridm JTopXJintJintJX=intJX
18 12 15 17 syl2anc φintJintJX=intJX
19 6 fveq2d φintJintJX=intJY
20 18 19 eqtr3d φintJX=intJY
21 20 reseq2d φdxXAdSxintJX=dxXAdSxintJY
22 3 fmpttd φxXA:X
23 5 4 dvres SxXA:XXSXSSDxXAX=dxXAdSxintJX
24 1 22 2 2 23 syl22anc φSDxXAX=dxXAdSxintJX
25 16 ntrss2 JTopXJintJXX
26 12 15 25 syl2anc φintJXX
27 6 26 eqsstrrd φYX
28 27 2 sstrd φYS
29 5 4 dvres SxXA:XXSYSSDxXAY=dxXAdSxintJY
30 1 22 2 28 29 syl22anc φSDxXAY=dxXAdSxintJY
31 21 24 30 3eqtr4d φSDxXAX=SDxXAY
32 ssid XX
33 resmpt XXxXAX=xXA
34 32 33 mp1i φxXAX=xXA
35 34 oveq2d φSDxXAX=dxXAdSx
36 31 35 eqtr3d φSDxXAY=dxXAdSx
37 27 resmptd φxXAY=xYA
38 37 oveq2d φSDxXAY=dxYAdSx
39 36 38 eqtr3d φdxXAdSx=dxYAdSx