Metamath Proof Explorer


Theorem itgsubsticc

Description: Integration by u-substitution. The main difference with respect to itgsubst is that here we consider the range of A ( x ) to be in the closed interval ( K , L ) . If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsubsticc.1 φX
itgsubsticc.2 φY
itgsubsticc.3 φXY
itgsubsticc.4 φxXYA:XYcnKL
itgsubsticc.5 φuKLC:KLcn
itgsubsticc.6 φxXYBXYcn𝐿1
itgsubsticc.7 φdxXYAdx=xXYB
itgsubsticc.8 u=AC=E
itgsubsticc.9 x=XA=K
itgsubsticc.10 x=YA=L
itgsubsticc.11 φK
itgsubsticc.12 φL
Assertion itgsubsticc φKLCdu=XYEBdx

Proof

Step Hyp Ref Expression
1 itgsubsticc.1 φX
2 itgsubsticc.2 φY
3 itgsubsticc.3 φXY
4 itgsubsticc.4 φxXYA:XYcnKL
5 itgsubsticc.5 φuKLC:KLcn
6 itgsubsticc.6 φxXYBXYcn𝐿1
7 itgsubsticc.7 φdxXYAdx=xXYB
8 itgsubsticc.8 u=AC=E
9 itgsubsticc.9 x=XA=K
10 itgsubsticc.10 x=YA=L
11 itgsubsticc.11 φK
12 itgsubsticc.12 φL
13 eqid uKLC=uKLC
14 eqid uifuKLuKLCuifu<KuKLCKuKLCL=uifuKLuKLCuifu<KuKLCKuKLCL
15 eqidd φxXYA=xXYA
16 10 adantl φx=YA=L
17 1 rexrd φX*
18 2 rexrd φY*
19 ubicc2 X*Y*XYYXY
20 17 18 3 19 syl3anc φYXY
21 15 16 20 12 fvmptd φxXYAY=L
22 cncff xXYA:XYcnKLxXYA:XYKL
23 4 22 syl φxXYA:XYKL
24 23 20 ffvelcdmd φxXYAYKL
25 21 24 eqeltrrd φLKL
26 elicc2 KLLKLLKLLL
27 11 12 26 syl2anc φLKLLKLLL
28 25 27 mpbid φLKLLL
29 28 simp2d φKL
30 13 14 1 2 3 4 6 5 11 12 29 7 8 9 10 itgsubsticclem φKLCdu=XYEBdx