| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsubsticc.1 |
|- ( ph -> X e. RR ) |
| 2 |
|
itgsubsticc.2 |
|- ( ph -> Y e. RR ) |
| 3 |
|
itgsubsticc.3 |
|- ( ph -> X <_ Y ) |
| 4 |
|
itgsubsticc.4 |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) ) |
| 5 |
|
itgsubsticc.5 |
|- ( ph -> ( u e. ( K [,] L ) |-> C ) e. ( ( K [,] L ) -cn-> CC ) ) |
| 6 |
|
itgsubsticc.6 |
|- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) ) |
| 7 |
|
itgsubsticc.7 |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
| 8 |
|
itgsubsticc.8 |
|- ( u = A -> C = E ) |
| 9 |
|
itgsubsticc.9 |
|- ( x = X -> A = K ) |
| 10 |
|
itgsubsticc.10 |
|- ( x = Y -> A = L ) |
| 11 |
|
itgsubsticc.11 |
|- ( ph -> K e. RR ) |
| 12 |
|
itgsubsticc.12 |
|- ( ph -> L e. RR ) |
| 13 |
|
eqid |
|- ( u e. ( K [,] L ) |-> C ) = ( u e. ( K [,] L ) |-> C ) |
| 14 |
|
eqid |
|- ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) = ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) |
| 15 |
|
eqidd |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) = ( x e. ( X [,] Y ) |-> A ) ) |
| 16 |
10
|
adantl |
|- ( ( ph /\ x = Y ) -> A = L ) |
| 17 |
1
|
rexrd |
|- ( ph -> X e. RR* ) |
| 18 |
2
|
rexrd |
|- ( ph -> Y e. RR* ) |
| 19 |
|
ubicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
| 20 |
17 18 3 19
|
syl3anc |
|- ( ph -> Y e. ( X [,] Y ) ) |
| 21 |
15 16 20 12
|
fvmptd |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) = L ) |
| 22 |
|
cncff |
|- ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
| 23 |
4 22
|
syl |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
| 24 |
23 20
|
ffvelcdmd |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) e. ( K [,] L ) ) |
| 25 |
21 24
|
eqeltrrd |
|- ( ph -> L e. ( K [,] L ) ) |
| 26 |
|
elicc2 |
|- ( ( K e. RR /\ L e. RR ) -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) ) |
| 27 |
11 12 26
|
syl2anc |
|- ( ph -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) ) |
| 28 |
25 27
|
mpbid |
|- ( ph -> ( L e. RR /\ K <_ L /\ L <_ L ) ) |
| 29 |
28
|
simp2d |
|- ( ph -> K <_ L ) |
| 30 |
13 14 1 2 3 4 6 5 11 12 29 7 8 9 10
|
itgsubsticclem |
|- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x ) |