Step |
Hyp |
Ref |
Expression |
1 |
|
itgioocnicc.a |
|- ( ph -> A e. RR ) |
2 |
|
itgioocnicc.b |
|- ( ph -> B e. RR ) |
3 |
|
itgioocnicc.f |
|- ( ph -> F : dom F --> CC ) |
4 |
|
itgioocnicc.fcn |
|- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
5 |
|
itgioocnicc.fdom |
|- ( ph -> ( A [,] B ) C_ dom F ) |
6 |
|
itgioocnicc.r |
|- ( ph -> R e. ( ( F |` ( A (,) B ) ) limCC A ) ) |
7 |
|
itgioocnicc.l |
|- ( ph -> L e. ( ( F |` ( A (,) B ) ) limCC B ) ) |
8 |
|
itgioocnicc.g |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
9 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
10 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = R ) |
11 |
9 10
|
eqtr4d |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
12 |
11
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
13 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
14 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = L ) |
15 |
13 14
|
eqtr4d |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
16 |
15
|
adantl |
|- ( ( -. x = A /\ x = B ) -> if ( x = B , L , ( F ` x ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
17 |
16
|
ifeq2d |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
18 |
17
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
19 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
21 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
22 |
21
|
adantl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
23 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
24 |
23
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
25 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
26 |
25
|
adantl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
27 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
28 |
27
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR* ) |
29 |
28
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
30 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
31 |
30
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
32 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
33 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
34 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
35 |
27 32 33 34
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
36 |
35
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR ) |
37 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
38 |
35
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
39 |
30
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
40 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
41 |
28 39 33 40
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
42 |
41
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
43 |
|
neqne |
|- ( -. x = A -> x =/= A ) |
44 |
43
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
45 |
37 38 42 44
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
46 |
45
|
adantr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
47 |
35
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR ) |
48 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR ) |
49 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
50 |
28 39 33 49
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
51 |
50
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B ) |
52 |
|
eqcom |
|- ( x = B <-> B = x ) |
53 |
52
|
notbii |
|- ( -. x = B <-> -. B = x ) |
54 |
53
|
biimpi |
|- ( -. x = B -> -. B = x ) |
55 |
54
|
neqned |
|- ( -. x = B -> B =/= x ) |
56 |
55
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
57 |
47 48 51 56
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
58 |
57
|
adantlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
59 |
29 31 36 46 58
|
eliood |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
60 |
|
fvres |
|- ( x e. ( A (,) B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
61 |
59 60
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
62 |
24 26 61
|
3eqtrrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
63 |
20 22 62
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
64 |
18 63
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
65 |
12 64
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
66 |
65
|
mpteq2dva |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
67 |
8 66
|
eqtrid |
|- ( ph -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
68 |
|
nfv |
|- F/ x ph |
69 |
|
eqid |
|- ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
70 |
68 69 1 2 4 7 6
|
cncfiooicc |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
71 |
67 70
|
eqeltrd |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
72 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ G e. ( ( A [,] B ) -cn-> CC ) ) -> G e. L^1 ) |
73 |
1 2 71 72
|
syl3anc |
|- ( ph -> G e. L^1 ) |
74 |
9
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
75 |
|
limccl |
|- ( ( F |` ( A (,) B ) ) limCC A ) C_ CC |
76 |
75 6
|
sselid |
|- ( ph -> R e. CC ) |
77 |
76
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> R e. CC ) |
78 |
74 77
|
eqeltrd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
79 |
19 13
|
sylan9eq |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
80 |
79
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
81 |
|
limccl |
|- ( ( F |` ( A (,) B ) ) limCC B ) C_ CC |
82 |
81 7
|
sselid |
|- ( ph -> L e. CC ) |
83 |
82
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> L e. CC ) |
84 |
80 83
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
85 |
19 21
|
sylan9eq |
|- ( ( -. x = A /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
86 |
85
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
87 |
61
|
eqcomd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
88 |
|
cncff |
|- ( ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
89 |
4 88
|
syl |
|- ( ph -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
90 |
89
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
91 |
90 59
|
ffvelrnd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) e. CC ) |
92 |
87 91
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
93 |
86 92
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
94 |
84 93
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
95 |
78 94
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
96 |
8
|
fvmpt2 |
|- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
97 |
33 95 96
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
98 |
97 95
|
eqeltrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( G ` x ) e. CC ) |
99 |
1 2 98
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( G ` x ) _d x = S. ( A [,] B ) ( G ` x ) _d x ) |
100 |
99
|
eqcomd |
|- ( ph -> S. ( A [,] B ) ( G ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
101 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
102 |
101
|
sseli |
|- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
103 |
102 97
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
104 |
1
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
105 |
|
eliooord |
|- ( x e. ( A (,) B ) -> ( A < x /\ x < B ) ) |
106 |
105
|
simpld |
|- ( x e. ( A (,) B ) -> A < x ) |
107 |
106
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
108 |
104 107
|
gtned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
109 |
108
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
110 |
109 19
|
syl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
111 |
102 35
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
112 |
105
|
simprd |
|- ( x e. ( A (,) B ) -> x < B ) |
113 |
112
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
114 |
111 113
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B ) |
115 |
114
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B ) |
116 |
115 21
|
syl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
117 |
103 110 116
|
3eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = ( F ` x ) ) |
118 |
117
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( G ` x ) _d x = S. ( A (,) B ) ( F ` x ) _d x ) |
119 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> F : dom F --> CC ) |
120 |
5
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. dom F ) |
121 |
119 120
|
ffvelrnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
122 |
1 2 121
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
123 |
100 118 122
|
3eqtrd |
|- ( ph -> S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
124 |
73 123
|
jca |
|- ( ph -> ( G e. L^1 /\ S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) ) |