| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgioocnicc.a |
|- ( ph -> A e. RR ) |
| 2 |
|
itgioocnicc.b |
|- ( ph -> B e. RR ) |
| 3 |
|
itgioocnicc.f |
|- ( ph -> F : dom F --> CC ) |
| 4 |
|
itgioocnicc.fcn |
|- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 5 |
|
itgioocnicc.fdom |
|- ( ph -> ( A [,] B ) C_ dom F ) |
| 6 |
|
itgioocnicc.r |
|- ( ph -> R e. ( ( F |` ( A (,) B ) ) limCC A ) ) |
| 7 |
|
itgioocnicc.l |
|- ( ph -> L e. ( ( F |` ( A (,) B ) ) limCC B ) ) |
| 8 |
|
itgioocnicc.g |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 9 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 10 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = R ) |
| 11 |
9 10
|
eqtr4d |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 13 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
| 14 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = L ) |
| 15 |
13 14
|
eqtr4d |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 16 |
15
|
adantl |
|- ( ( -. x = A /\ x = B ) -> if ( x = B , L , ( F ` x ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 17 |
16
|
ifeq2d |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 18 |
17
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 19 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 20 |
19
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 21 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 22 |
21
|
adantl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 23 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 24 |
23
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 25 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
| 26 |
25
|
adantl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
| 27 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
| 28 |
27
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR* ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
| 30 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 31 |
30
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
| 32 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 33 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
| 34 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 35 |
27 32 33 34
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR ) |
| 37 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
| 38 |
35
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
| 39 |
30
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 40 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 41 |
28 39 33 40
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 42 |
41
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
| 43 |
|
neqne |
|- ( -. x = A -> x =/= A ) |
| 44 |
43
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
| 45 |
37 38 42 44
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
| 46 |
45
|
adantr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
| 47 |
35
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR ) |
| 48 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR ) |
| 49 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 50 |
28 39 33 49
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 51 |
50
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B ) |
| 52 |
|
eqcom |
|- ( x = B <-> B = x ) |
| 53 |
52
|
notbii |
|- ( -. x = B <-> -. B = x ) |
| 54 |
53
|
biimpi |
|- ( -. x = B -> -. B = x ) |
| 55 |
54
|
neqned |
|- ( -. x = B -> B =/= x ) |
| 56 |
55
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
| 57 |
47 48 51 56
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
| 58 |
57
|
adantlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
| 59 |
29 31 36 46 58
|
eliood |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
| 60 |
|
fvres |
|- ( x e. ( A (,) B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
| 61 |
59 60
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
| 62 |
24 26 61
|
3eqtrrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 63 |
20 22 62
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 64 |
18 63
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 65 |
12 64
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 66 |
65
|
mpteq2dva |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
| 67 |
8 66
|
eqtrid |
|- ( ph -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
| 68 |
|
nfv |
|- F/ x ph |
| 69 |
|
eqid |
|- ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 70 |
68 69 1 2 4 7 6
|
cncfiooicc |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 71 |
67 70
|
eqeltrd |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 72 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ G e. ( ( A [,] B ) -cn-> CC ) ) -> G e. L^1 ) |
| 73 |
1 2 71 72
|
syl3anc |
|- ( ph -> G e. L^1 ) |
| 74 |
9
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 75 |
|
limccl |
|- ( ( F |` ( A (,) B ) ) limCC A ) C_ CC |
| 76 |
75 6
|
sselid |
|- ( ph -> R e. CC ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> R e. CC ) |
| 78 |
74 77
|
eqeltrd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 79 |
19 13
|
sylan9eq |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 80 |
79
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 81 |
|
limccl |
|- ( ( F |` ( A (,) B ) ) limCC B ) C_ CC |
| 82 |
81 7
|
sselid |
|- ( ph -> L e. CC ) |
| 83 |
82
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> L e. CC ) |
| 84 |
80 83
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 85 |
19 21
|
sylan9eq |
|- ( ( -. x = A /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 86 |
85
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 87 |
61
|
eqcomd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
| 88 |
|
cncff |
|- ( ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
| 89 |
4 88
|
syl |
|- ( ph -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
| 90 |
89
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
| 91 |
90 59
|
ffvelcdmd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) e. CC ) |
| 92 |
87 91
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
| 93 |
86 92
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 94 |
84 93
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 95 |
78 94
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 96 |
8
|
fvmpt2 |
|- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 97 |
33 95 96
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 98 |
97 95
|
eqeltrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( G ` x ) e. CC ) |
| 99 |
1 2 98
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( G ` x ) _d x = S. ( A [,] B ) ( G ` x ) _d x ) |
| 100 |
99
|
eqcomd |
|- ( ph -> S. ( A [,] B ) ( G ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
| 101 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 102 |
101
|
sseli |
|- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
| 103 |
102 97
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 104 |
1
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 105 |
|
eliooord |
|- ( x e. ( A (,) B ) -> ( A < x /\ x < B ) ) |
| 106 |
105
|
simpld |
|- ( x e. ( A (,) B ) -> A < x ) |
| 107 |
106
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
| 108 |
104 107
|
gtned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
| 109 |
108
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
| 110 |
109 19
|
syl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 111 |
102 35
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 112 |
105
|
simprd |
|- ( x e. ( A (,) B ) -> x < B ) |
| 113 |
112
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
| 114 |
111 113
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B ) |
| 115 |
114
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B ) |
| 116 |
115 21
|
syl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 117 |
103 110 116
|
3eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = ( F ` x ) ) |
| 118 |
117
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( G ` x ) _d x = S. ( A (,) B ) ( F ` x ) _d x ) |
| 119 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> F : dom F --> CC ) |
| 120 |
5
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. dom F ) |
| 121 |
119 120
|
ffvelcdmd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 122 |
1 2 121
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 123 |
100 118 122
|
3eqtrd |
|- ( ph -> S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 124 |
73 123
|
jca |
|- ( ph -> ( G e. L^1 /\ S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) ) |