| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgioocnicc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
itgioocnicc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
itgioocnicc.f |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 4 |
|
itgioocnicc.fcn |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 5 |
|
itgioocnicc.fdom |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) |
| 6 |
|
itgioocnicc.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| 7 |
|
itgioocnicc.l |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 8 |
|
itgioocnicc.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 9 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 10 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = 𝑅 ) |
| 11 |
9 10
|
eqtr4d |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 13 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
| 14 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = 𝐿 ) |
| 15 |
13 14
|
eqtr4d |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 17 |
16
|
ifeq2d |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 18 |
17
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 19 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 |
19
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 23 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 24 |
23
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 25 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 28 |
27
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 30 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 31 |
30
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 32 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 34 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 35 |
27 32 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
| 37 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 38 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ ℝ ) |
| 39 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 40 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 41 |
28 39 33 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 ≤ 𝑥 ) |
| 43 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝐴 → 𝑥 ≠ 𝐴 ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ≠ 𝐴 ) |
| 45 |
37 38 42 44
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → 𝐴 < 𝑥 ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 < 𝑥 ) |
| 47 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
| 48 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 49 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 50 |
28 39 33 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ≤ 𝐵 ) |
| 52 |
|
eqcom |
⊢ ( 𝑥 = 𝐵 ↔ 𝐵 = 𝑥 ) |
| 53 |
52
|
notbii |
⊢ ( ¬ 𝑥 = 𝐵 ↔ ¬ 𝐵 = 𝑥 ) |
| 54 |
53
|
biimpi |
⊢ ( ¬ 𝑥 = 𝐵 → ¬ 𝐵 = 𝑥 ) |
| 55 |
54
|
neqned |
⊢ ( ¬ 𝑥 = 𝐵 → 𝐵 ≠ 𝑥 ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ≠ 𝑥 ) |
| 57 |
47 48 51 56
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐵 ) |
| 58 |
57
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐵 ) |
| 59 |
29 31 36 46 58
|
eliood |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 60 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 62 |
24 26 61
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 63 |
20 22 62
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 64 |
18 63
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 65 |
12 64
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 66 |
65
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) ) |
| 67 |
8 66
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) ) |
| 68 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 69 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) |
| 70 |
68 69 1 2 4 7 6
|
cncfiooicc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 71 |
67 70
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 72 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐺 ∈ 𝐿1 ) |
| 73 |
1 2 71 72
|
syl3anc |
⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |
| 74 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 75 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ⊆ ℂ |
| 76 |
75 6
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 77 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → 𝑅 ∈ ℂ ) |
| 78 |
74 77
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 79 |
19 13
|
sylan9eq |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝐿 ) |
| 80 |
79
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝐿 ) |
| 81 |
|
limccl |
⊢ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ⊆ ℂ |
| 82 |
81 7
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 83 |
82
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
| 84 |
80 83
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 85 |
19 21
|
sylan9eq |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 86 |
85
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 87 |
61
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 88 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 89 |
4 88
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 90 |
89
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 91 |
90 59
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 92 |
87 91
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 93 |
86 92
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 94 |
84 93
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 95 |
78 94
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 96 |
8
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 97 |
33 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 98 |
97 95
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 99 |
1 2 98
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 100 |
99
|
eqcomd |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 101 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 102 |
101
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 103 |
102 97
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 104 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 105 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 106 |
105
|
simpld |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝑥 ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑥 ) |
| 108 |
104 107
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐴 ) |
| 109 |
108
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 ) |
| 110 |
109 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 111 |
102 35
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 112 |
105
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 < 𝐵 ) |
| 113 |
112
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 114 |
111 113
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐵 ) |
| 115 |
114
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐵 ) |
| 116 |
115 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 117 |
103 110 116
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 118 |
117
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 119 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 120 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 121 |
119 120
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 122 |
1 2 121
|
itgioo |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 123 |
100 118 122
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 124 |
73 123
|
jca |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐿1 ∧ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |