| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgioocnicc.a |
|
| 2 |
|
itgioocnicc.b |
|
| 3 |
|
itgioocnicc.f |
|
| 4 |
|
itgioocnicc.fcn |
|
| 5 |
|
itgioocnicc.fdom |
|
| 6 |
|
itgioocnicc.r |
|
| 7 |
|
itgioocnicc.l |
|
| 8 |
|
itgioocnicc.g |
|
| 9 |
|
iftrue |
|
| 10 |
|
iftrue |
|
| 11 |
9 10
|
eqtr4d |
|
| 12 |
11
|
adantl |
|
| 13 |
|
iftrue |
|
| 14 |
|
iftrue |
|
| 15 |
13 14
|
eqtr4d |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
ifeq2d |
|
| 18 |
17
|
adantll |
|
| 19 |
|
iffalse |
|
| 20 |
19
|
ad2antlr |
|
| 21 |
|
iffalse |
|
| 22 |
21
|
adantl |
|
| 23 |
|
iffalse |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
|
iffalse |
|
| 26 |
25
|
adantl |
|
| 27 |
1
|
adantr |
|
| 28 |
27
|
rexrd |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
2
|
rexrd |
|
| 31 |
30
|
ad3antrrr |
|
| 32 |
2
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
|
eliccre |
|
| 35 |
27 32 33 34
|
syl3anc |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
1
|
ad2antrr |
|
| 38 |
35
|
adantr |
|
| 39 |
30
|
adantr |
|
| 40 |
|
iccgelb |
|
| 41 |
28 39 33 40
|
syl3anc |
|
| 42 |
41
|
adantr |
|
| 43 |
|
neqne |
|
| 44 |
43
|
adantl |
|
| 45 |
37 38 42 44
|
leneltd |
|
| 46 |
45
|
adantr |
|
| 47 |
35
|
adantr |
|
| 48 |
2
|
ad2antrr |
|
| 49 |
|
iccleub |
|
| 50 |
28 39 33 49
|
syl3anc |
|
| 51 |
50
|
adantr |
|
| 52 |
|
eqcom |
|
| 53 |
52
|
notbii |
|
| 54 |
53
|
biimpi |
|
| 55 |
54
|
neqned |
|
| 56 |
55
|
adantl |
|
| 57 |
47 48 51 56
|
leneltd |
|
| 58 |
57
|
adantlr |
|
| 59 |
29 31 36 46 58
|
eliood |
|
| 60 |
|
fvres |
|
| 61 |
59 60
|
syl |
|
| 62 |
24 26 61
|
3eqtrrd |
|
| 63 |
20 22 62
|
3eqtrd |
|
| 64 |
18 63
|
pm2.61dan |
|
| 65 |
12 64
|
pm2.61dan |
|
| 66 |
65
|
mpteq2dva |
|
| 67 |
8 66
|
eqtrid |
|
| 68 |
|
nfv |
|
| 69 |
|
eqid |
|
| 70 |
68 69 1 2 4 7 6
|
cncfiooicc |
|
| 71 |
67 70
|
eqeltrd |
|
| 72 |
|
cniccibl |
|
| 73 |
1 2 71 72
|
syl3anc |
|
| 74 |
9
|
adantl |
|
| 75 |
|
limccl |
|
| 76 |
75 6
|
sselid |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
74 77
|
eqeltrd |
|
| 79 |
19 13
|
sylan9eq |
|
| 80 |
79
|
adantll |
|
| 81 |
|
limccl |
|
| 82 |
81 7
|
sselid |
|
| 83 |
82
|
ad3antrrr |
|
| 84 |
80 83
|
eqeltrd |
|
| 85 |
19 21
|
sylan9eq |
|
| 86 |
85
|
adantll |
|
| 87 |
61
|
eqcomd |
|
| 88 |
|
cncff |
|
| 89 |
4 88
|
syl |
|
| 90 |
89
|
ad3antrrr |
|
| 91 |
90 59
|
ffvelcdmd |
|
| 92 |
87 91
|
eqeltrd |
|
| 93 |
86 92
|
eqeltrd |
|
| 94 |
84 93
|
pm2.61dan |
|
| 95 |
78 94
|
pm2.61dan |
|
| 96 |
8
|
fvmpt2 |
|
| 97 |
33 95 96
|
syl2anc |
|
| 98 |
97 95
|
eqeltrd |
|
| 99 |
1 2 98
|
itgioo |
|
| 100 |
99
|
eqcomd |
|
| 101 |
|
ioossicc |
|
| 102 |
101
|
sseli |
|
| 103 |
102 97
|
sylan2 |
|
| 104 |
1
|
adantr |
|
| 105 |
|
eliooord |
|
| 106 |
105
|
simpld |
|
| 107 |
106
|
adantl |
|
| 108 |
104 107
|
gtned |
|
| 109 |
108
|
neneqd |
|
| 110 |
109 19
|
syl |
|
| 111 |
102 35
|
sylan2 |
|
| 112 |
105
|
simprd |
|
| 113 |
112
|
adantl |
|
| 114 |
111 113
|
ltned |
|
| 115 |
114
|
neneqd |
|
| 116 |
115 21
|
syl |
|
| 117 |
103 110 116
|
3eqtrd |
|
| 118 |
117
|
itgeq2dv |
|
| 119 |
3
|
adantr |
|
| 120 |
5
|
sselda |
|
| 121 |
119 120
|
ffvelcdmd |
|
| 122 |
1 2 121
|
itgioo |
|
| 123 |
100 118 122
|
3eqtrd |
|
| 124 |
73 123
|
jca |
|