Metamath Proof Explorer


Theorem itgioo

Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014)

Ref Expression
Hypotheses itgioo.1 φA
itgioo.2 φB
itgioo.3 φxABC
Assertion itgioo φABCdx=ABCdx

Proof

Step Hyp Ref Expression
1 itgioo.1 φA
2 itgioo.2 φB
3 itgioo.3 φxABC
4 ioossicc ABAB
5 4 a1i φABAB
6 iccssre ABAB
7 1 2 6 syl2anc φAB
8 1 rexrd φA*
9 2 rexrd φB*
10 icc0 A*B*AB=B<A
11 8 9 10 syl2anc φAB=B<A
12 11 biimpar φB<AAB=
13 12 difeq1d φB<AABAB=AB
14 0dif AB=
15 0ss AB
16 14 15 eqsstri ABAB
17 13 16 eqsstrdi φB<AABABAB
18 uncom ABAB=ABAB
19 8 adantr φABA*
20 9 adantr φABB*
21 simpr φABAB
22 prunioo A*B*ABABAB=AB
23 19 20 21 22 syl3anc φABABAB=AB
24 18 23 eqtr2id φABAB=ABAB
25 24 difeq1d φABABAB=ABABAB
26 difun2 ABABAB=ABAB
27 25 26 eqtrdi φABABAB=ABAB
28 difss ABABAB
29 27 28 eqsstrdi φABABABAB
30 17 29 2 1 ltlecasei φABABAB
31 1 2 prssd φAB
32 prfi ABFin
33 ovolfi ABFinABvol*AB=0
34 32 31 33 sylancr φvol*AB=0
35 ovolssnul ABABABABvol*AB=0vol*ABAB=0
36 30 31 34 35 syl3anc φvol*ABAB=0
37 5 7 36 3 itgss3 φxABC𝐿1xABC𝐿1ABCdx=ABCdx
38 37 simprd φABCdx=ABCdx