Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgioo.1 | |
|
itgioo.2 | |
||
itgioo.3 | |
||
Assertion | itgioo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgioo.1 | |
|
2 | itgioo.2 | |
|
3 | itgioo.3 | |
|
4 | ioossicc | |
|
5 | 4 | a1i | |
6 | iccssre | |
|
7 | 1 2 6 | syl2anc | |
8 | 1 | rexrd | |
9 | 2 | rexrd | |
10 | icc0 | |
|
11 | 8 9 10 | syl2anc | |
12 | 11 | biimpar | |
13 | 12 | difeq1d | |
14 | 0dif | |
|
15 | 0ss | |
|
16 | 14 15 | eqsstri | |
17 | 13 16 | eqsstrdi | |
18 | uncom | |
|
19 | 8 | adantr | |
20 | 9 | adantr | |
21 | simpr | |
|
22 | prunioo | |
|
23 | 19 20 21 22 | syl3anc | |
24 | 18 23 | eqtr2id | |
25 | 24 | difeq1d | |
26 | difun2 | |
|
27 | 25 26 | eqtrdi | |
28 | difss | |
|
29 | 27 28 | eqsstrdi | |
30 | 17 29 2 1 | ltlecasei | |
31 | 1 2 | prssd | |
32 | prfi | |
|
33 | ovolfi | |
|
34 | 32 31 33 | sylancr | |
35 | ovolssnul | |
|
36 | 30 31 34 35 | syl3anc | |
37 | 5 7 36 3 | itgss3 | |
38 | 37 | simprd | |