Metamath Proof Explorer


Theorem itgsubsticclem

Description: lemma for itgsubsticc . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsubsticclem.1 F = u K L C
itgsubsticclem.2 G = u if u K L F u if u < K F K F L
itgsubsticclem.3 φ X
itgsubsticclem.4 φ Y
itgsubsticclem.5 φ X Y
itgsubsticclem.6 φ x X Y A : X Y cn K L
itgsubsticclem.7 φ x X Y B X Y cn 𝐿 1
itgsubsticclem.8 φ F : K L cn
itgsubsticclem.9 φ K
itgsubsticclem.10 φ L
itgsubsticclem.11 φ K L
itgsubsticclem.12 φ dx X Y A d x = x X Y B
itgsubsticclem.13 u = A C = E
itgsubsticclem.14 x = X A = K
itgsubsticclem.15 x = Y A = L
Assertion itgsubsticclem φ K L C du = X Y E B dx

Proof

Step Hyp Ref Expression
1 itgsubsticclem.1 F = u K L C
2 itgsubsticclem.2 G = u if u K L F u if u < K F K F L
3 itgsubsticclem.3 φ X
4 itgsubsticclem.4 φ Y
5 itgsubsticclem.5 φ X Y
6 itgsubsticclem.6 φ x X Y A : X Y cn K L
7 itgsubsticclem.7 φ x X Y B X Y cn 𝐿 1
8 itgsubsticclem.8 φ F : K L cn
9 itgsubsticclem.9 φ K
10 itgsubsticclem.10 φ L
11 itgsubsticclem.11 φ K L
12 itgsubsticclem.12 φ dx X Y A d x = x X Y B
13 itgsubsticclem.13 u = A C = E
14 itgsubsticclem.14 x = X A = K
15 itgsubsticclem.15 x = Y A = L
16 fveq2 u = w G u = G w
17 nfcv _ w G u
18 nfmpt1 _ u u if u K L F u if u < K F K F L
19 2 18 nfcxfr _ u G
20 nfcv _ u w
21 19 20 nffv _ u G w
22 16 17 21 cbvditg K L G u du = K L G w dw
23 9 10 iccssred φ K L
24 23 adantr φ u K L K L
25 ioossicc K L K L
26 25 sseli u K L u K L
27 26 adantl φ u K L u K L
28 24 27 sseldd φ u K L u
29 27 iftrued φ u K L if u K L F u if u < K F K F L = F u
30 1 a1i φ F = u K L C
31 cncff F : K L cn F : K L
32 8 31 syl φ F : K L
33 30 32 feq1dd φ u K L C : K L
34 33 fvmptelrn φ u K L C
35 27 34 syldan φ u K L C
36 1 fvmpt2 u K L C F u = C
37 27 35 36 syl2anc φ u K L F u = C
38 37 35 eqeltrd φ u K L F u
39 29 38 eqeltrd φ u K L if u K L F u if u < K F K F L
40 2 fvmpt2 u if u K L F u if u < K F K F L G u = if u K L F u if u < K F K F L
41 28 39 40 syl2anc φ u K L G u = if u K L F u if u < K F K F L
42 41 29 37 3eqtrd φ u K L G u = C
43 11 42 ditgeq3d φ K L G u du = K L C du
44 mnfxr −∞ *
45 44 a1i φ −∞ *
46 pnfxr +∞ *
47 46 a1i φ +∞ *
48 ioomax −∞ +∞ =
49 48 eqcomi = −∞ +∞
50 49 a1i φ = −∞ +∞
51 23 50 sseqtrd φ K L −∞ +∞
52 ax-resscn
53 50 52 eqsstrrdi φ −∞ +∞
54 cncfss K L −∞ +∞ −∞ +∞ X Y cn K L X Y cn −∞ +∞
55 51 53 54 syl2anc φ X Y cn K L X Y cn −∞ +∞
56 55 6 sseldd φ x X Y A : X Y cn −∞ +∞
57 nfmpt1 _ u u K L C
58 1 57 nfcxfr _ u F
59 eqid topGen ran . = topGen ran .
60 eqid TopOpen fld = TopOpen fld
61 eqid TopOpen fld = TopOpen fld
62 61 cnfldtop TopOpen fld Top
63 62 a1i φ TopOpen fld Top
64 23 52 sstrdi φ K L
65 ssid
66 eqid TopOpen fld 𝑡 K L = TopOpen fld 𝑡 K L
67 unicntop = TopOpen fld
68 67 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
69 62 68 ax-mp TopOpen fld 𝑡 = TopOpen fld
70 69 eqcomi TopOpen fld = TopOpen fld 𝑡
71 61 66 70 cncfcn K L K L cn = TopOpen fld 𝑡 K L Cn TopOpen fld
72 64 65 71 sylancl φ K L cn = TopOpen fld 𝑡 K L Cn TopOpen fld
73 reex V
74 73 a1i φ V
75 restabs TopOpen fld Top K L V TopOpen fld 𝑡 𝑡 K L = TopOpen fld 𝑡 K L
76 63 23 74 75 syl3anc φ TopOpen fld 𝑡 𝑡 K L = TopOpen fld 𝑡 K L
77 61 tgioo2 topGen ran . = TopOpen fld 𝑡
78 77 eqcomi TopOpen fld 𝑡 = topGen ran .
79 78 a1i φ TopOpen fld 𝑡 = topGen ran .
80 79 oveq1d φ TopOpen fld 𝑡 𝑡 K L = topGen ran . 𝑡 K L
81 76 80 eqtr3d φ TopOpen fld 𝑡 K L = topGen ran . 𝑡 K L
82 81 oveq1d φ TopOpen fld 𝑡 K L Cn TopOpen fld = topGen ran . 𝑡 K L Cn TopOpen fld
83 72 82 eqtrd φ K L cn = topGen ran . 𝑡 K L Cn TopOpen fld
84 8 83 eleqtrd φ F topGen ran . 𝑡 K L Cn TopOpen fld
85 58 59 60 2 9 10 11 63 84 icccncfext φ G topGen ran . Cn TopOpen fld 𝑡 ran F G K L = F
86 85 simpld φ G topGen ran . Cn TopOpen fld 𝑡 ran F
87 uniretop = topGen ran .
88 eqid TopOpen fld 𝑡 ran F = TopOpen fld 𝑡 ran F
89 87 88 cnf G topGen ran . Cn TopOpen fld 𝑡 ran F G : TopOpen fld 𝑡 ran F
90 86 89 syl φ G : TopOpen fld 𝑡 ran F
91 50 feq2d φ G : TopOpen fld 𝑡 ran F G : −∞ +∞ TopOpen fld 𝑡 ran F
92 90 91 mpbid φ G : −∞ +∞ TopOpen fld 𝑡 ran F
93 92 feqmptd φ G = w −∞ +∞ G w
94 32 frnd φ ran F
95 cncfss ran F −∞ +∞ cn ran F −∞ +∞ cn
96 94 65 95 sylancl φ −∞ +∞ cn ran F −∞ +∞ cn
97 49 oveq2i TopOpen fld 𝑡 = TopOpen fld 𝑡 −∞ +∞
98 77 97 eqtri topGen ran . = TopOpen fld 𝑡 −∞ +∞
99 eqid TopOpen fld 𝑡 ran F = TopOpen fld 𝑡 ran F
100 61 98 99 cncfcn −∞ +∞ ran F −∞ +∞ cn ran F = topGen ran . Cn TopOpen fld 𝑡 ran F
101 53 94 100 syl2anc φ −∞ +∞ cn ran F = topGen ran . Cn TopOpen fld 𝑡 ran F
102 101 eqcomd φ topGen ran . Cn TopOpen fld 𝑡 ran F = −∞ +∞ cn ran F
103 86 102 eleqtrd φ G : −∞ +∞ cn ran F
104 96 103 sseldd φ G : −∞ +∞ cn
105 93 104 eqeltrrd φ w −∞ +∞ G w : −∞ +∞ cn
106 fveq2 w = A G w = G A
107 3 4 5 45 47 56 7 105 12 106 14 15 itgsubst φ K L G w dw = X Y G A B dx
108 22 43 107 3eqtr3a φ K L C du = X Y G A B dx
109 2 a1i φ x X Y G = u if u K L F u if u < K F K F L
110 simpr φ x X Y u = A u = A
111 61 cnfldtopon TopOpen fld TopOn
112 3 4 iccssred φ X Y
113 112 52 sstrdi φ X Y
114 resttopon TopOpen fld TopOn X Y TopOpen fld 𝑡 X Y TopOn X Y
115 111 113 114 sylancr φ TopOpen fld 𝑡 X Y TopOn X Y
116 resttopon TopOpen fld TopOn K L TopOpen fld 𝑡 K L TopOn K L
117 111 64 116 sylancr φ TopOpen fld 𝑡 K L TopOn K L
118 eqid TopOpen fld 𝑡 X Y = TopOpen fld 𝑡 X Y
119 61 118 66 cncfcn X Y K L X Y cn K L = TopOpen fld 𝑡 X Y Cn TopOpen fld 𝑡 K L
120 113 64 119 syl2anc φ X Y cn K L = TopOpen fld 𝑡 X Y Cn TopOpen fld 𝑡 K L
121 6 120 eleqtrd φ x X Y A TopOpen fld 𝑡 X Y Cn TopOpen fld 𝑡 K L
122 cnf2 TopOpen fld 𝑡 X Y TopOn X Y TopOpen fld 𝑡 K L TopOn K L x X Y A TopOpen fld 𝑡 X Y Cn TopOpen fld 𝑡 K L x X Y A : X Y K L
123 115 117 121 122 syl3anc φ x X Y A : X Y K L
124 123 adantr φ x X Y x X Y A : X Y K L
125 eqid x X Y A = x X Y A
126 125 fmpt x X Y A K L x X Y A : X Y K L
127 124 126 sylibr φ x X Y x X Y A K L
128 ioossicc X Y X Y
129 128 sseli x X Y x X Y
130 129 adantl φ x X Y x X Y
131 rsp x X Y A K L x X Y A K L
132 127 130 131 sylc φ x X Y A K L
133 132 adantr φ x X Y u = A A K L
134 110 133 eqeltrd φ x X Y u = A u K L
135 134 iftrued φ x X Y u = A if u K L F u if u < K F K F L = F u
136 simpll φ x X Y u = A φ
137 136 134 34 syl2anc φ x X Y u = A C
138 134 137 36 syl2anc φ x X Y u = A F u = C
139 13 adantl φ x X Y u = A C = E
140 135 138 139 3eqtrd φ x X Y u = A if u K L F u if u < K F K F L = E
141 23 adantr φ x X Y K L
142 141 132 sseldd φ x X Y A
143 elex A K L A V
144 132 143 syl φ x X Y A V
145 isset A V u u = A
146 144 145 sylib φ x X Y u u = A
147 139 137 eqeltrrd φ x X Y u = A E
148 146 147 exlimddv φ x X Y E
149 109 140 142 148 fvmptd φ x X Y G A = E
150 149 oveq1d φ x X Y G A B = E B
151 5 150 ditgeq3d φ X Y G A B dx = X Y E B dx
152 108 151 eqtrd φ K L C du = X Y E B dx