| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsubsticclem.1 |
|
| 2 |
|
itgsubsticclem.2 |
|
| 3 |
|
itgsubsticclem.3 |
|
| 4 |
|
itgsubsticclem.4 |
|
| 5 |
|
itgsubsticclem.5 |
|
| 6 |
|
itgsubsticclem.6 |
|
| 7 |
|
itgsubsticclem.7 |
|
| 8 |
|
itgsubsticclem.8 |
|
| 9 |
|
itgsubsticclem.9 |
|
| 10 |
|
itgsubsticclem.10 |
|
| 11 |
|
itgsubsticclem.11 |
|
| 12 |
|
itgsubsticclem.12 |
|
| 13 |
|
itgsubsticclem.13 |
|
| 14 |
|
itgsubsticclem.14 |
|
| 15 |
|
itgsubsticclem.15 |
|
| 16 |
|
fveq2 |
|
| 17 |
|
nfcv |
|
| 18 |
|
nfmpt1 |
|
| 19 |
2 18
|
nfcxfr |
|
| 20 |
|
nfcv |
|
| 21 |
19 20
|
nffv |
|
| 22 |
16 17 21
|
cbvditg |
|
| 23 |
9 10
|
iccssred |
|
| 24 |
23
|
adantr |
|
| 25 |
|
ioossicc |
|
| 26 |
25
|
sseli |
|
| 27 |
26
|
adantl |
|
| 28 |
24 27
|
sseldd |
|
| 29 |
27
|
iftrued |
|
| 30 |
1
|
a1i |
|
| 31 |
|
cncff |
|
| 32 |
8 31
|
syl |
|
| 33 |
30 32
|
feq1dd |
|
| 34 |
33
|
fvmptelcdm |
|
| 35 |
27 34
|
syldan |
|
| 36 |
1
|
fvmpt2 |
|
| 37 |
27 35 36
|
syl2anc |
|
| 38 |
37 35
|
eqeltrd |
|
| 39 |
29 38
|
eqeltrd |
|
| 40 |
2
|
fvmpt2 |
|
| 41 |
28 39 40
|
syl2anc |
|
| 42 |
41 29 37
|
3eqtrd |
|
| 43 |
11 42
|
ditgeq3d |
|
| 44 |
|
mnfxr |
|
| 45 |
44
|
a1i |
|
| 46 |
|
pnfxr |
|
| 47 |
46
|
a1i |
|
| 48 |
|
ioomax |
|
| 49 |
48
|
eqcomi |
|
| 50 |
49
|
a1i |
|
| 51 |
23 50
|
sseqtrd |
|
| 52 |
|
ax-resscn |
|
| 53 |
50 52
|
eqsstrrdi |
|
| 54 |
|
cncfss |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
55 6
|
sseldd |
|
| 57 |
|
nfmpt1 |
|
| 58 |
1 57
|
nfcxfr |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
61
|
cnfldtop |
|
| 63 |
62
|
a1i |
|
| 64 |
23 52
|
sstrdi |
|
| 65 |
|
ssid |
|
| 66 |
|
eqid |
|
| 67 |
|
unicntop |
|
| 68 |
67
|
restid |
|
| 69 |
62 68
|
ax-mp |
|
| 70 |
69
|
eqcomi |
|
| 71 |
61 66 70
|
cncfcn |
|
| 72 |
64 65 71
|
sylancl |
|
| 73 |
|
reex |
|
| 74 |
73
|
a1i |
|
| 75 |
|
restabs |
|
| 76 |
63 23 74 75
|
syl3anc |
|
| 77 |
|
tgioo4 |
|
| 78 |
77
|
eqcomi |
|
| 79 |
78
|
a1i |
|
| 80 |
79
|
oveq1d |
|
| 81 |
76 80
|
eqtr3d |
|
| 82 |
81
|
oveq1d |
|
| 83 |
72 82
|
eqtrd |
|
| 84 |
8 83
|
eleqtrd |
|
| 85 |
58 59 60 2 9 10 11 63 84
|
icccncfext |
|
| 86 |
85
|
simpld |
|
| 87 |
|
uniretop |
|
| 88 |
|
eqid |
|
| 89 |
87 88
|
cnf |
|
| 90 |
86 89
|
syl |
|
| 91 |
50
|
feq2d |
|
| 92 |
90 91
|
mpbid |
|
| 93 |
92
|
feqmptd |
|
| 94 |
32
|
frnd |
|
| 95 |
|
cncfss |
|
| 96 |
94 65 95
|
sylancl |
|
| 97 |
49
|
oveq2i |
|
| 98 |
77 97
|
eqtri |
|
| 99 |
|
eqid |
|
| 100 |
61 98 99
|
cncfcn |
|
| 101 |
53 94 100
|
syl2anc |
|
| 102 |
101
|
eqcomd |
|
| 103 |
86 102
|
eleqtrd |
|
| 104 |
96 103
|
sseldd |
|
| 105 |
93 104
|
eqeltrrd |
|
| 106 |
|
fveq2 |
|
| 107 |
3 4 5 45 47 56 7 105 12 106 14 15
|
itgsubst |
|
| 108 |
22 43 107
|
3eqtr3a |
|
| 109 |
2
|
a1i |
|
| 110 |
|
simpr |
|
| 111 |
61
|
cnfldtopon |
|
| 112 |
3 4
|
iccssred |
|
| 113 |
112 52
|
sstrdi |
|
| 114 |
|
resttopon |
|
| 115 |
111 113 114
|
sylancr |
|
| 116 |
|
resttopon |
|
| 117 |
111 64 116
|
sylancr |
|
| 118 |
|
eqid |
|
| 119 |
61 118 66
|
cncfcn |
|
| 120 |
113 64 119
|
syl2anc |
|
| 121 |
6 120
|
eleqtrd |
|
| 122 |
|
cnf2 |
|
| 123 |
115 117 121 122
|
syl3anc |
|
| 124 |
123
|
adantr |
|
| 125 |
|
eqid |
|
| 126 |
125
|
fmpt |
|
| 127 |
124 126
|
sylibr |
|
| 128 |
|
ioossicc |
|
| 129 |
128
|
sseli |
|
| 130 |
129
|
adantl |
|
| 131 |
|
rsp |
|
| 132 |
127 130 131
|
sylc |
|
| 133 |
132
|
adantr |
|
| 134 |
110 133
|
eqeltrd |
|
| 135 |
134
|
iftrued |
|
| 136 |
|
simpll |
|
| 137 |
136 134 34
|
syl2anc |
|
| 138 |
134 137 36
|
syl2anc |
|
| 139 |
13
|
adantl |
|
| 140 |
135 138 139
|
3eqtrd |
|
| 141 |
23
|
adantr |
|
| 142 |
141 132
|
sseldd |
|
| 143 |
|
elex |
|
| 144 |
132 143
|
syl |
|
| 145 |
|
isset |
|
| 146 |
144 145
|
sylib |
|
| 147 |
139 137
|
eqeltrrd |
|
| 148 |
146 147
|
exlimddv |
|
| 149 |
109 140 142 148
|
fvmptd |
|
| 150 |
149
|
oveq1d |
|
| 151 |
5 150
|
ditgeq3d |
|
| 152 |
108 151
|
eqtrd |
|