Metamath Proof Explorer


Theorem itgsubsticclem

Description: lemma for itgsubsticc . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsubsticclem.1 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 )
itgsubsticclem.2 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) )
itgsubsticclem.3 ( 𝜑𝑋 ∈ ℝ )
itgsubsticclem.4 ( 𝜑𝑌 ∈ ℝ )
itgsubsticclem.5 ( 𝜑𝑋𝑌 )
itgsubsticclem.6 ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) )
itgsubsticclem.7 ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) )
itgsubsticclem.8 ( 𝜑𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) )
itgsubsticclem.9 ( 𝜑𝐾 ∈ ℝ )
itgsubsticclem.10 ( 𝜑𝐿 ∈ ℝ )
itgsubsticclem.11 ( 𝜑𝐾𝐿 )
itgsubsticclem.12 ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) )
itgsubsticclem.13 ( 𝑢 = 𝐴𝐶 = 𝐸 )
itgsubsticclem.14 ( 𝑥 = 𝑋𝐴 = 𝐾 )
itgsubsticclem.15 ( 𝑥 = 𝑌𝐴 = 𝐿 )
Assertion itgsubsticclem ( 𝜑 → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 itgsubsticclem.1 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 )
2 itgsubsticclem.2 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) )
3 itgsubsticclem.3 ( 𝜑𝑋 ∈ ℝ )
4 itgsubsticclem.4 ( 𝜑𝑌 ∈ ℝ )
5 itgsubsticclem.5 ( 𝜑𝑋𝑌 )
6 itgsubsticclem.6 ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) )
7 itgsubsticclem.7 ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) )
8 itgsubsticclem.8 ( 𝜑𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) )
9 itgsubsticclem.9 ( 𝜑𝐾 ∈ ℝ )
10 itgsubsticclem.10 ( 𝜑𝐿 ∈ ℝ )
11 itgsubsticclem.11 ( 𝜑𝐾𝐿 )
12 itgsubsticclem.12 ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) )
13 itgsubsticclem.13 ( 𝑢 = 𝐴𝐶 = 𝐸 )
14 itgsubsticclem.14 ( 𝑥 = 𝑋𝐴 = 𝐾 )
15 itgsubsticclem.15 ( 𝑥 = 𝑌𝐴 = 𝐿 )
16 fveq2 ( 𝑢 = 𝑤 → ( 𝐺𝑢 ) = ( 𝐺𝑤 ) )
17 nfcv 𝑤 ( 𝐺𝑢 )
18 nfmpt1 𝑢 ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) )
19 2 18 nfcxfr 𝑢 𝐺
20 nfcv 𝑢 𝑤
21 19 20 nffv 𝑢 ( 𝐺𝑤 )
22 16 17 21 cbvditg ⨜ [ 𝐾𝐿 ] ( 𝐺𝑢 ) d 𝑢 = ⨜ [ 𝐾𝐿 ] ( 𝐺𝑤 ) d 𝑤
23 9 10 iccssred ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ℝ )
24 23 adantr ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐾 [,] 𝐿 ) ⊆ ℝ )
25 ioossicc ( 𝐾 (,) 𝐿 ) ⊆ ( 𝐾 [,] 𝐿 )
26 25 sseli ( 𝑢 ∈ ( 𝐾 (,) 𝐿 ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) )
27 26 adantl ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) )
28 24 27 sseldd ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝑢 ∈ ℝ )
29 27 iftrued ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) = ( 𝐹𝑢 ) )
30 1 a1i ( 𝜑𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) )
31 cncff ( 𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) → 𝐹 : ( 𝐾 [,] 𝐿 ) ⟶ ℂ )
32 8 31 syl ( 𝜑𝐹 : ( 𝐾 [,] 𝐿 ) ⟶ ℂ )
33 30 32 feq1dd ( 𝜑 → ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) : ( 𝐾 [,] 𝐿 ) ⟶ ℂ )
34 33 fvmptelrn ( ( 𝜑𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) → 𝐶 ∈ ℂ )
35 27 34 syldan ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝐶 ∈ ℂ )
36 1 fvmpt2 ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐹𝑢 ) = 𝐶 )
37 27 35 36 syl2anc ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐹𝑢 ) = 𝐶 )
38 37 35 eqeltrd ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐹𝑢 ) ∈ ℂ )
39 29 38 eqeltrd ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) ∈ ℂ )
40 2 fvmpt2 ( ( 𝑢 ∈ ℝ ∧ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) ∈ ℂ ) → ( 𝐺𝑢 ) = if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) )
41 28 39 40 syl2anc ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐺𝑢 ) = if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) )
42 41 29 37 3eqtrd ( ( 𝜑𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐺𝑢 ) = 𝐶 )
43 11 42 ditgeq3d ( 𝜑 → ⨜ [ 𝐾𝐿 ] ( 𝐺𝑢 ) d 𝑢 = ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 )
44 mnfxr -∞ ∈ ℝ*
45 44 a1i ( 𝜑 → -∞ ∈ ℝ* )
46 pnfxr +∞ ∈ ℝ*
47 46 a1i ( 𝜑 → +∞ ∈ ℝ* )
48 ioomax ( -∞ (,) +∞ ) = ℝ
49 48 eqcomi ℝ = ( -∞ (,) +∞ )
50 49 a1i ( 𝜑 → ℝ = ( -∞ (,) +∞ ) )
51 23 50 sseqtrd ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ( -∞ (,) +∞ ) )
52 ax-resscn ℝ ⊆ ℂ
53 50 52 eqsstrrdi ( 𝜑 → ( -∞ (,) +∞ ) ⊆ ℂ )
54 cncfss ( ( ( 𝐾 [,] 𝐿 ) ⊆ ( -∞ (,) +∞ ) ∧ ( -∞ (,) +∞ ) ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) )
55 51 53 54 syl2anc ( 𝜑 → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) )
56 55 6 sseldd ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) )
57 nfmpt1 𝑢 ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 )
58 1 57 nfcxfr 𝑢 𝐹
59 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
60 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
61 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
62 61 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
63 62 a1i ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top )
64 23 52 sstrdi ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ℂ )
65 ssid ℂ ⊆ ℂ
66 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) )
67 unicntop ℂ = ( TopOpen ‘ ℂfld )
68 67 restid ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) )
69 62 68 ax-mp ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld )
70 69 eqcomi ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
71 61 66 70 cncfcn ( ( ( 𝐾 [,] 𝐿 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
72 64 65 71 sylancl ( 𝜑 → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
73 reex ℝ ∈ V
74 73 a1i ( 𝜑 → ℝ ∈ V )
75 restabs ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) )
76 63 23 74 75 syl3anc ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) )
77 61 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
78 77 eqcomi ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) )
79 78 a1i ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) )
80 79 oveq1d ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) )
81 76 80 eqtr3d ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) )
82 81 oveq1d ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
83 72 82 eqtrd ( 𝜑 → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
84 8 83 eleqtrd ( 𝜑𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) )
85 58 59 60 2 9 10 11 63 84 icccncfext ( 𝜑 → ( 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ∧ ( 𝐺 ↾ ( 𝐾 [,] 𝐿 ) ) = 𝐹 ) )
86 85 simpld ( 𝜑𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) )
87 uniretop ℝ = ( topGen ‘ ran (,) )
88 eqid ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) = ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 )
89 87 88 cnf ( 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) → 𝐺 : ℝ ⟶ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) )
90 86 89 syl ( 𝜑𝐺 : ℝ ⟶ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) )
91 50 feq2d ( 𝜑 → ( 𝐺 : ℝ ⟶ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ↔ 𝐺 : ( -∞ (,) +∞ ) ⟶ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) )
92 90 91 mpbid ( 𝜑𝐺 : ( -∞ (,) +∞ ) ⟶ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) )
93 92 feqmptd ( 𝜑𝐺 = ( 𝑤 ∈ ( -∞ (,) +∞ ) ↦ ( 𝐺𝑤 ) ) )
94 32 frnd ( 𝜑 → ran 𝐹 ⊆ ℂ )
95 cncfss ( ( ran 𝐹 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ⊆ ( ( -∞ (,) +∞ ) –cn→ ℂ ) )
96 94 65 95 sylancl ( 𝜑 → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ⊆ ( ( -∞ (,) +∞ ) –cn→ ℂ ) )
97 49 oveq2i ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( ( TopOpen ‘ ℂfld ) ↾t ( -∞ (,) +∞ ) )
98 77 97 eqtri ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( -∞ (,) +∞ ) )
99 eqid ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) = ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 )
100 61 98 99 cncfcn ( ( ( -∞ (,) +∞ ) ⊆ ℂ ∧ ran 𝐹 ⊆ ℂ ) → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) )
101 53 94 100 syl2anc ( 𝜑 → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) )
102 101 eqcomd ( 𝜑 → ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) = ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) )
103 86 102 eleqtrd ( 𝜑𝐺 ∈ ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) )
104 96 103 sseldd ( 𝜑𝐺 ∈ ( ( -∞ (,) +∞ ) –cn→ ℂ ) )
105 93 104 eqeltrrd ( 𝜑 → ( 𝑤 ∈ ( -∞ (,) +∞ ) ↦ ( 𝐺𝑤 ) ) ∈ ( ( -∞ (,) +∞ ) –cn→ ℂ ) )
106 fveq2 ( 𝑤 = 𝐴 → ( 𝐺𝑤 ) = ( 𝐺𝐴 ) )
107 3 4 5 45 47 56 7 105 12 106 14 15 itgsubst ( 𝜑 → ⨜ [ 𝐾𝐿 ] ( 𝐺𝑤 ) d 𝑤 = ⨜ [ 𝑋𝑌 ] ( ( 𝐺𝐴 ) · 𝐵 ) d 𝑥 )
108 22 43 107 3eqtr3a ( 𝜑 → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( ( 𝐺𝐴 ) · 𝐵 ) d 𝑥 )
109 2 a1i ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) ) )
110 simpr ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝑢 = 𝐴 )
111 61 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
112 3 4 iccssred ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ )
113 112 52 sstrdi ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℂ )
114 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) )
115 111 113 114 sylancr ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) )
116 resttopon ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) )
117 111 64 116 sylancr ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) )
118 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) )
119 61 118 66 cncfcn ( ( ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) )
120 113 64 119 syl2anc ( 𝜑 → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) )
121 6 120 eleqtrd ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) )
122 cnf2 ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) )
123 115 117 121 122 syl3anc ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) )
124 123 adantr ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) )
125 eqid ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 )
126 125 fmpt ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) )
127 124 126 sylibr ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) )
128 ioossicc ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 )
129 128 sseli ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) )
130 129 adantl ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) )
131 rsp ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) )
132 127 130 131 sylc ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) )
133 132 adantr ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) )
134 110 133 eqeltrd ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) )
135 134 iftrued ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) = ( 𝐹𝑢 ) )
136 simpll ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝜑 )
137 136 134 34 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐶 ∈ ℂ )
138 134 137 36 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → ( 𝐹𝑢 ) = 𝐶 )
139 13 adantl ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐶 = 𝐸 )
140 135 138 139 3eqtrd ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹𝐾 ) , ( 𝐹𝐿 ) ) ) = 𝐸 )
141 23 adantr ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐾 [,] 𝐿 ) ⊆ ℝ )
142 141 132 sseldd ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ℝ )
143 elex ( 𝐴 ∈ ( 𝐾 [,] 𝐿 ) → 𝐴 ∈ V )
144 132 143 syl ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ V )
145 isset ( 𝐴 ∈ V ↔ ∃ 𝑢 𝑢 = 𝐴 )
146 144 145 sylib ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ∃ 𝑢 𝑢 = 𝐴 )
147 139 137 eqeltrrd ( ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐸 ∈ ℂ )
148 146 147 exlimddv ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐸 ∈ ℂ )
149 109 140 142 148 fvmptd ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐺𝐴 ) = 𝐸 )
150 149 oveq1d ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐺𝐴 ) · 𝐵 ) = ( 𝐸 · 𝐵 ) )
151 5 150 ditgeq3d ( 𝜑 → ⨜ [ 𝑋𝑌 ] ( ( 𝐺𝐴 ) · 𝐵 ) d 𝑥 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )
152 108 151 eqtrd ( 𝜑 → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )