| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsubsticclem.1 |
⊢ 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) |
| 2 |
|
itgsubsticclem.2 |
⊢ 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) |
| 3 |
|
itgsubsticclem.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 4 |
|
itgsubsticclem.4 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
|
itgsubsticclem.5 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
| 6 |
|
itgsubsticclem.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ) |
| 7 |
|
itgsubsticclem.7 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) ) |
| 8 |
|
itgsubsticclem.8 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) ) |
| 9 |
|
itgsubsticclem.9 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 10 |
|
itgsubsticclem.10 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 11 |
|
itgsubsticclem.11 |
⊢ ( 𝜑 → 𝐾 ≤ 𝐿 ) |
| 12 |
|
itgsubsticclem.12 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
| 13 |
|
itgsubsticclem.13 |
⊢ ( 𝑢 = 𝐴 → 𝐶 = 𝐸 ) |
| 14 |
|
itgsubsticclem.14 |
⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐾 ) |
| 15 |
|
itgsubsticclem.15 |
⊢ ( 𝑥 = 𝑌 → 𝐴 = 𝐿 ) |
| 16 |
|
fveq2 |
⊢ ( 𝑢 = 𝑤 → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑤 ( 𝐺 ‘ 𝑢 ) |
| 18 |
|
nfmpt1 |
⊢ Ⅎ 𝑢 ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) |
| 19 |
2 18
|
nfcxfr |
⊢ Ⅎ 𝑢 𝐺 |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑤 |
| 21 |
19 20
|
nffv |
⊢ Ⅎ 𝑢 ( 𝐺 ‘ 𝑤 ) |
| 22 |
16 17 21
|
cbvditg |
⊢ ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑢 ) d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑤 ) d 𝑤 |
| 23 |
9 10
|
iccssred |
⊢ ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ℝ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐾 [,] 𝐿 ) ⊆ ℝ ) |
| 25 |
|
ioossicc |
⊢ ( 𝐾 (,) 𝐿 ) ⊆ ( 𝐾 [,] 𝐿 ) |
| 26 |
25
|
sseli |
⊢ ( 𝑢 ∈ ( 𝐾 (,) 𝐿 ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 28 |
24 27
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝑢 ∈ ℝ ) |
| 29 |
27
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) = ( 𝐹 ‘ 𝑢 ) ) |
| 30 |
1
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) ) |
| 31 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) → 𝐹 : ( 𝐾 [,] 𝐿 ) ⟶ ℂ ) |
| 32 |
8 31
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐾 [,] 𝐿 ) ⟶ ℂ ) |
| 33 |
30 32
|
feq1dd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) : ( 𝐾 [,] 𝐿 ) ⟶ ℂ ) |
| 34 |
33
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) → 𝐶 ∈ ℂ ) |
| 35 |
27 34
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → 𝐶 ∈ ℂ ) |
| 36 |
1
|
fvmpt2 |
⊢ ( ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐹 ‘ 𝑢 ) = 𝐶 ) |
| 37 |
27 35 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐹 ‘ 𝑢 ) = 𝐶 ) |
| 38 |
37 35
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 39 |
29 38
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ∈ ℂ ) |
| 40 |
2
|
fvmpt2 |
⊢ ( ( 𝑢 ∈ ℝ ∧ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑢 ) = if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) |
| 41 |
28 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐺 ‘ 𝑢 ) = if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) |
| 42 |
41 29 37
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 (,) 𝐿 ) ) → ( 𝐺 ‘ 𝑢 ) = 𝐶 ) |
| 43 |
11 42
|
ditgeq3d |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑢 ) d 𝑢 = ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 ) |
| 44 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 46 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 48 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
| 49 |
48
|
eqcomi |
⊢ ℝ = ( -∞ (,) +∞ ) |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ℝ = ( -∞ (,) +∞ ) ) |
| 51 |
23 50
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ( -∞ (,) +∞ ) ) |
| 52 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 53 |
50 52
|
eqsstrrdi |
⊢ ( 𝜑 → ( -∞ (,) +∞ ) ⊆ ℂ ) |
| 54 |
|
cncfss |
⊢ ( ( ( 𝐾 [,] 𝐿 ) ⊆ ( -∞ (,) +∞ ) ∧ ( -∞ (,) +∞ ) ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) ) |
| 55 |
51 53 54
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) ) |
| 56 |
55 6
|
sseldd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( -∞ (,) +∞ ) ) ) |
| 57 |
|
nfmpt1 |
⊢ Ⅎ 𝑢 ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ↦ 𝐶 ) |
| 58 |
1 57
|
nfcxfr |
⊢ Ⅎ 𝑢 𝐹 |
| 59 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 60 |
|
eqid |
⊢ ∪ ( TopOpen ‘ ℂfld ) = ∪ ( TopOpen ‘ ℂfld ) |
| 61 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 62 |
61
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 64 |
23 52
|
sstrdi |
⊢ ( 𝜑 → ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) |
| 65 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 66 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) |
| 67 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 68 |
67
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 69 |
62 68
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 70 |
69
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 71 |
61 66 70
|
cncfcn |
⊢ ( ( ( 𝐾 [,] 𝐿 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 72 |
64 65 71
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 73 |
|
reex |
⊢ ℝ ∈ V |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 75 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 76 |
63 23 74 75
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 77 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 78 |
77
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
| 79 |
78
|
a1i |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 81 |
76 80
|
eqtr3d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) ) |
| 82 |
81
|
oveq1d |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 83 |
72 82
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐾 [,] 𝐿 ) –cn→ ℂ ) = ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 84 |
8 83
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐾 [,] 𝐿 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 85 |
58 59 60 2 9 10 11 63 84
|
icccncfext |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ∧ ( 𝐺 ↾ ( 𝐾 [,] 𝐿 ) ) = 𝐹 ) ) |
| 86 |
85
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 87 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 88 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) |
| 89 |
87 88
|
cnf |
⊢ ( 𝐺 ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) → 𝐺 : ℝ ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) |
| 90 |
86 89
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) |
| 91 |
50
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : ℝ ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ↔ 𝐺 : ( -∞ (,) +∞ ) ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 92 |
90 91
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ( -∞ (,) +∞ ) ⟶ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) |
| 93 |
92
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ ( -∞ (,) +∞ ) ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 94 |
32
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 95 |
|
cncfss |
⊢ ( ( ran 𝐹 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ⊆ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 96 |
94 65 95
|
sylancl |
⊢ ( 𝜑 → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ⊆ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 97 |
49
|
oveq2i |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( ( TopOpen ‘ ℂfld ) ↾t ( -∞ (,) +∞ ) ) |
| 98 |
77 97
|
eqtri |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( -∞ (,) +∞ ) ) |
| 99 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) = ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) |
| 100 |
61 98 99
|
cncfcn |
⊢ ( ( ( -∞ (,) +∞ ) ⊆ ℂ ∧ ran 𝐹 ⊆ ℂ ) → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 101 |
53 94 100
|
syl2anc |
⊢ ( 𝜑 → ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) ) |
| 102 |
101
|
eqcomd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ran 𝐹 ) ) = ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ) |
| 103 |
86 102
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( -∞ (,) +∞ ) –cn→ ran 𝐹 ) ) |
| 104 |
96 103
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 105 |
93 104
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( -∞ (,) +∞ ) ↦ ( 𝐺 ‘ 𝑤 ) ) ∈ ( ( -∞ (,) +∞ ) –cn→ ℂ ) ) |
| 106 |
|
fveq2 |
⊢ ( 𝑤 = 𝐴 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 107 |
3 4 5 45 47 56 7 105 12 106 14 15
|
itgsubst |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] ( 𝐺 ‘ 𝑤 ) d 𝑤 = ⨜ [ 𝑋 → 𝑌 ] ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) d 𝑥 ) |
| 108 |
22 43 107
|
3eqtr3a |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) d 𝑥 ) |
| 109 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐺 = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) ) ) |
| 110 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝑢 = 𝐴 ) |
| 111 |
61
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 112 |
3 4
|
iccssred |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 113 |
112 52
|
sstrdi |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) |
| 114 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ) |
| 115 |
111 113 114
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ) |
| 116 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ) |
| 117 |
111 64 116
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ) |
| 118 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) |
| 119 |
61 118 66
|
cncfcn |
⊢ ( ( ( 𝑋 [,] 𝑌 ) ⊆ ℂ ∧ ( 𝐾 [,] 𝐿 ) ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) |
| 120 |
113 64 119
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝐾 [,] 𝐿 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) |
| 121 |
6 120
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) |
| 122 |
|
cnf2 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 [,] 𝑌 ) ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ∈ ( TopOn ‘ ( 𝐾 [,] 𝐿 ) ) ∧ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑋 [,] 𝑌 ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐾 [,] 𝐿 ) ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 123 |
115 117 121 122
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 125 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) |
| 126 |
125
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ↔ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝐾 [,] 𝐿 ) ) |
| 127 |
124 126
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 128 |
|
ioossicc |
⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) |
| 129 |
128
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 131 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝐾 [,] 𝐿 ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) ) |
| 132 |
127 130 131
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐴 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 134 |
110 133
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝑢 ∈ ( 𝐾 [,] 𝐿 ) ) |
| 135 |
134
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) = ( 𝐹 ‘ 𝑢 ) ) |
| 136 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝜑 ) |
| 137 |
136 134 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐶 ∈ ℂ ) |
| 138 |
134 137 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → ( 𝐹 ‘ 𝑢 ) = 𝐶 ) |
| 139 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐶 = 𝐸 ) |
| 140 |
135 138 139
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → if ( 𝑢 ∈ ( 𝐾 [,] 𝐿 ) , ( 𝐹 ‘ 𝑢 ) , if ( 𝑢 < 𝐾 , ( 𝐹 ‘ 𝐾 ) , ( 𝐹 ‘ 𝐿 ) ) ) = 𝐸 ) |
| 141 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐾 [,] 𝐿 ) ⊆ ℝ ) |
| 142 |
141 132
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ℝ ) |
| 143 |
|
elex |
⊢ ( 𝐴 ∈ ( 𝐾 [,] 𝐿 ) → 𝐴 ∈ V ) |
| 144 |
132 143
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ V ) |
| 145 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑢 𝑢 = 𝐴 ) |
| 146 |
144 145
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ∃ 𝑢 𝑢 = 𝐴 ) |
| 147 |
139 137
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) ∧ 𝑢 = 𝐴 ) → 𝐸 ∈ ℂ ) |
| 148 |
146 147
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐸 ∈ ℂ ) |
| 149 |
109 140 142 148
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐺 ‘ 𝐴 ) = 𝐸 ) |
| 150 |
149
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) = ( 𝐸 · 𝐵 ) ) |
| 151 |
5 150
|
ditgeq3d |
⊢ ( 𝜑 → ⨜ [ 𝑋 → 𝑌 ] ( ( 𝐺 ‘ 𝐴 ) · 𝐵 ) d 𝑥 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |
| 152 |
108 151
|
eqtrd |
⊢ ( 𝜑 → ⨜ [ 𝐾 → 𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 → 𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) |