Metamath Proof Explorer


Theorem itgsubst

Description: Integration by u -substitution. If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . In this part of the proof we discharge the assumptions in itgsubstlem , which use the fact that ( Z , W ) is open to shrink the interval a little to ( M , N ) where Z < M < N < W - this is possible because A ( x ) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses itgsubst.x ( 𝜑𝑋 ∈ ℝ )
itgsubst.y ( 𝜑𝑌 ∈ ℝ )
itgsubst.le ( 𝜑𝑋𝑌 )
itgsubst.z ( 𝜑𝑍 ∈ ℝ* )
itgsubst.w ( 𝜑𝑊 ∈ ℝ* )
itgsubst.a ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) )
itgsubst.b ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) )
itgsubst.c ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) )
itgsubst.da ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) )
itgsubst.e ( 𝑢 = 𝐴𝐶 = 𝐸 )
itgsubst.k ( 𝑥 = 𝑋𝐴 = 𝐾 )
itgsubst.l ( 𝑥 = 𝑌𝐴 = 𝐿 )
Assertion itgsubst ( 𝜑 → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )

Proof

Step Hyp Ref Expression
1 itgsubst.x ( 𝜑𝑋 ∈ ℝ )
2 itgsubst.y ( 𝜑𝑌 ∈ ℝ )
3 itgsubst.le ( 𝜑𝑋𝑌 )
4 itgsubst.z ( 𝜑𝑍 ∈ ℝ* )
5 itgsubst.w ( 𝜑𝑊 ∈ ℝ* )
6 itgsubst.a ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) )
7 itgsubst.b ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) )
8 itgsubst.c ( 𝜑 → ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) )
9 itgsubst.da ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) )
10 itgsubst.e ( 𝑢 = 𝐴𝐶 = 𝐸 )
11 itgsubst.k ( 𝑥 = 𝑋𝐴 = 𝐾 )
12 itgsubst.l ( 𝑥 = 𝑌𝐴 = 𝐿 )
13 ioossre ( 𝑍 (,) 𝑊 ) ⊆ ℝ
14 ax-resscn ℝ ⊆ ℂ
15 cncfss ( ( ( 𝑍 (,) 𝑊 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) )
16 13 14 15 mp2an ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) ⊆ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ )
17 16 6 sseldi ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℝ ) )
18 1 2 3 17 evthicc ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) )
19 ressxr ℝ ⊆ ℝ*
20 13 19 sstri ( 𝑍 (,) 𝑊 ) ⊆ ℝ*
21 cncff ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
22 6 21 syl ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
23 22 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
24 simprl ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) )
25 23 24 ffvelrnd ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) )
26 20 25 sseldi ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
27 5 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑊 ∈ ℝ* )
28 eliooord ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) → ( 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) )
29 25 28 syl ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) )
30 29 simprd ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 )
31 qbtwnxr ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ*𝑊 ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) → ∃ 𝑛 ∈ ℚ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) )
32 26 27 30 31 syl3anc ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℚ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) )
33 qre ( 𝑛 ∈ ℚ → 𝑛 ∈ ℝ )
34 33 ad2antrl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ℝ )
35 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑍 ∈ ℝ* )
36 26 adantr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
37 34 rexrd ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ℝ* )
38 29 simpld ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) )
39 38 adantr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) )
40 simprrl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 )
41 35 36 37 39 40 xrlttrd ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑍 < 𝑛 )
42 simprrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑛 < 𝑊 )
43 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑊 ∈ ℝ* )
44 elioo2 ( ( 𝑍 ∈ ℝ*𝑊 ∈ ℝ* ) → ( 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊 ) ) )
45 35 43 44 syl2anc ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊 ) ) )
46 34 41 42 45 mpbir3and ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ( 𝑍 (,) 𝑊 ) )
47 anass ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) )
48 simprrl ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 )
49 48 adantr ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 )
50 22 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
51 50 ffvelrnda ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑍 (,) 𝑊 ) )
52 20 51 sseldi ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* )
53 simplr ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) )
54 50 53 ffvelrnd ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) )
55 20 54 sseldi ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
56 55 adantr ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
57 33 ad2antrl ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → 𝑛 ∈ ℝ )
58 57 adantr ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ℝ )
59 58 rexrd ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ℝ* )
60 xrlelttr ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ*𝑛 ∈ ℝ* ) → ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
61 52 56 59 60 syl3anc ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
62 49 61 mpan2d ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
63 62 ralimdva ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
64 63 imp ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 )
65 64 an32s ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 )
66 47 65 sylanbr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ∧ ( 𝑛 ∈ ℚ ∧ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑛𝑛 < 𝑊 ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 )
67 32 46 66 reximssdv ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 )
68 67 rexlimdvaa ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) → ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
69 4 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → 𝑍 ∈ ℝ* )
70 22 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
71 simprl ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) )
72 70 71 ffvelrnd ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) )
73 20 72 sseldi ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
74 72 28 syl ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 ) )
75 74 simpld ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → 𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) )
76 qbtwnxr ( ( 𝑍 ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ*𝑍 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) → ∃ 𝑚 ∈ ℚ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) )
77 69 73 75 76 syl3anc ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ∃ 𝑚 ∈ ℚ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) )
78 qre ( 𝑚 ∈ ℚ → 𝑚 ∈ ℝ )
79 78 ad2antrl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ℝ )
80 simprrl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑍 < 𝑚 )
81 79 rexrd ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ℝ* )
82 73 adantr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
83 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑊 ∈ ℝ* )
84 simprrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) )
85 74 simprd ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 )
86 85 adantr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) < 𝑊 )
87 81 82 83 84 86 xrlttrd ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 < 𝑊 )
88 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑍 ∈ ℝ* )
89 elioo2 ( ( 𝑍 ∈ ℝ*𝑊 ∈ ℝ* ) → ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊 ) ) )
90 88 83 89 syl2anc ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊 ) ) )
91 79 80 87 90 mpbir3and ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ( 𝑍 (,) 𝑊 ) )
92 anass ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) )
93 simprrr ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) )
94 93 adantr ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) )
95 78 ad2antrl ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑚 ∈ ℝ )
96 95 adantr ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ℝ )
97 96 rexrd ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ℝ* )
98 22 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
99 simplr ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑦 ∈ ( 𝑋 [,] 𝑌 ) )
100 98 99 ffvelrnd ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ( 𝑍 (,) 𝑊 ) )
101 20 100 sseldi ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
102 101 adantr ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* )
103 98 ffvelrnda ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑍 (,) 𝑊 ) )
104 20 103 sseldi ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* )
105 xrltletr ( ( 𝑚 ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∈ ℝ* ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ* ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) )
106 97 102 104 105 syl3anc ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) )
107 94 106 mpand ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) → 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) )
108 107 ralimdva ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) )
109 108 imp ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) )
110 109 an32s ( ( ( ( 𝜑𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) )
111 92 110 sylanbr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ( 𝑚 ∈ ℚ ∧ ( 𝑍 < 𝑚𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ) ) ) → ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) )
112 77 91 111 reximssdv ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ) → ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) )
113 112 rexlimdvaa ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) → ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) )
114 ancom ( ( ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ∧ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
115 reeanv ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
116 114 115 bitr4i ( ( ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ∧ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) ↔ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
117 r19.26 ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) )
118 22 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ( 𝑍 (,) 𝑊 ) )
119 118 ffvelrnda ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑍 (,) 𝑊 ) )
120 13 119 sseldi ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ )
121 120 3biant1d ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) )
122 simplrl ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ( 𝑍 (,) 𝑊 ) )
123 20 122 sseldi ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑚 ∈ ℝ* )
124 simplrr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ( 𝑍 (,) 𝑊 ) )
125 20 124 sseldi ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑛 ∈ ℝ* )
126 elioo2 ( ( 𝑚 ∈ ℝ*𝑛 ∈ ℝ* ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) )
127 123 125 126 syl2anc ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ) )
128 121 127 bitr4d ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) ∧ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ) )
129 128 ralbidva ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) ↔ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ) )
130 nffvmpt1 𝑥 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 )
131 130 nfel1 𝑥 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 )
132 nfv 𝑧 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 )
133 fveq2 ( 𝑧 = 𝑥 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) )
134 133 eleq1d ( 𝑧 = 𝑥 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ) )
135 131 132 134 cbvralw ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) )
136 simpr ( ( 𝜑𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) )
137 22 fvmptelrn ( ( 𝜑𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ( 𝑍 (,) 𝑊 ) )
138 eqid ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 )
139 138 fvmpt2 ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝐴 ∈ ( 𝑍 (,) 𝑊 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 )
140 136 137 139 syl2anc ( ( 𝜑𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 )
141 140 eleq1d ( ( 𝜑𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) )
142 141 ralbidva ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) )
143 135 142 syl5bb ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) )
144 143 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) )
145 1 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑋 ∈ ℝ )
146 2 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑌 ∈ ℝ )
147 3 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑋𝑌 )
148 4 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑍 ∈ ℝ* )
149 5 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑊 ∈ ℝ* )
150 nfcv 𝑦 𝐴
151 nfcsb1v 𝑥 𝑦 / 𝑥 𝐴
152 csbeq1a ( 𝑥 = 𝑦𝐴 = 𝑦 / 𝑥 𝐴 )
153 150 151 152 cbvmpt ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 / 𝑥 𝐴 )
154 153 6 eqeltrrid ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 / 𝑥 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) )
155 154 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 / 𝑥 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ( 𝑍 (,) 𝑊 ) ) )
156 nfcv 𝑦 𝐵
157 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
158 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
159 156 157 158 cbvmpt ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 / 𝑥 𝐵 )
160 159 7 eqeltrrid ( 𝜑 → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 / 𝑥 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) )
161 160 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 / 𝑥 𝐵 ) ∈ ( ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ∩ 𝐿1 ) )
162 nfcv 𝑣 𝐶
163 nfcsb1v 𝑢 𝑣 / 𝑢 𝐶
164 csbeq1a ( 𝑢 = 𝑣𝐶 = 𝑣 / 𝑢 𝐶 )
165 162 163 164 cbvmpt ( 𝑢 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝐶 ) = ( 𝑣 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝑣 / 𝑢 𝐶 )
166 165 8 eqeltrrid ( 𝜑 → ( 𝑣 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝑣 / 𝑢 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) )
167 166 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( 𝑣 ∈ ( 𝑍 (,) 𝑊 ) ↦ 𝑣 / 𝑢 𝐶 ) ∈ ( ( 𝑍 (,) 𝑊 ) –cn→ ℂ ) )
168 153 oveq2i ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 / 𝑥 𝐴 ) )
169 9 168 159 3eqtr3g ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 / 𝑥 𝐴 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 / 𝑥 𝐵 ) )
170 169 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝑦 / 𝑥 𝐴 ) ) = ( 𝑦 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝑦 / 𝑥 𝐵 ) )
171 csbeq1 ( 𝑣 = 𝑦 / 𝑥 𝐴 𝑣 / 𝑢 𝐶 = 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 )
172 csbeq1 ( 𝑦 = 𝑋 𝑦 / 𝑥 𝐴 = 𝑋 / 𝑥 𝐴 )
173 csbeq1 ( 𝑦 = 𝑌 𝑦 / 𝑥 𝐴 = 𝑌 / 𝑥 𝐴 )
174 simprll ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑚 ∈ ( 𝑍 (,) 𝑊 ) )
175 simprlr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → 𝑛 ∈ ( 𝑍 (,) 𝑊 ) )
176 simprr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) )
177 151 nfel1 𝑥 𝑦 / 𝑥 𝐴 ∈ ( 𝑚 (,) 𝑛 )
178 152 eleq1d ( 𝑥 = 𝑦 → ( 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ↔ 𝑦 / 𝑥 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) )
179 177 178 rspc ( 𝑦 ∈ ( 𝑋 [,] 𝑌 ) → ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) → 𝑦 / 𝑥 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) )
180 176 179 mpan9 ( ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) ∧ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝑦 / 𝑥 𝐴 ∈ ( 𝑚 (,) 𝑛 ) )
181 145 146 147 148 149 155 161 167 170 171 172 173 174 175 180 itgsubstlem ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝑣 / 𝑢 𝐶 d 𝑣 = ⨜ [ 𝑋𝑌 ] ( 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 · 𝑦 / 𝑥 𝐵 ) d 𝑦 )
182 164 162 163 cbvditg ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝑣 / 𝑢 𝐶 d 𝑣
183 nfcvd ( 𝑋 ∈ ℝ → 𝑥 𝐾 )
184 183 11 csbiegf ( 𝑋 ∈ ℝ → 𝑋 / 𝑥 𝐴 = 𝐾 )
185 ditgeq1 ( 𝑋 / 𝑥 𝐴 = 𝐾 → ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 )
186 1 184 185 3syl ( 𝜑 → ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 )
187 nfcvd ( 𝑌 ∈ ℝ → 𝑥 𝐿 )
188 187 12 csbiegf ( 𝑌 ∈ ℝ → 𝑌 / 𝑥 𝐴 = 𝐿 )
189 ditgeq2 ( 𝑌 / 𝑥 𝐴 = 𝐿 → ⨜ [ 𝐾 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 )
190 2 188 189 3syl ( 𝜑 → ⨜ [ 𝐾 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 )
191 186 190 eqtrd ( 𝜑 → ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝐶 d 𝑢 = ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 )
192 182 191 syl5eqr ( 𝜑 → ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝑣 / 𝑢 𝐶 d 𝑣 = ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 )
193 192 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ 𝑋 / 𝑥 𝐴 𝑌 / 𝑥 𝐴 ] 𝑣 / 𝑢 𝐶 d 𝑣 = ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 )
194 152 csbeq1d ( 𝑥 = 𝑦 𝐴 / 𝑢 𝐶 = 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 )
195 194 158 oveq12d ( 𝑥 = 𝑦 → ( 𝐴 / 𝑢 𝐶 · 𝐵 ) = ( 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 · 𝑦 / 𝑥 𝐵 ) )
196 nfcv 𝑦 ( 𝐴 / 𝑢 𝐶 · 𝐵 )
197 nfcv 𝑥 𝐶
198 151 197 nfcsbw 𝑥 𝑦 / 𝑥 𝐴 / 𝑢 𝐶
199 nfcv 𝑥 ·
200 198 199 157 nfov 𝑥 ( 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 · 𝑦 / 𝑥 𝐵 )
201 195 196 200 cbvditg ⨜ [ 𝑋𝑌 ] ( 𝐴 / 𝑢 𝐶 · 𝐵 ) d 𝑥 = ⨜ [ 𝑋𝑌 ] ( 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 · 𝑦 / 𝑥 𝐵 ) d 𝑦
202 ioossicc ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 )
203 202 sseli ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) )
204 203 137 sylan2 ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ( 𝑍 (,) 𝑊 ) )
205 nfcvd ( 𝐴 ∈ ( 𝑍 (,) 𝑊 ) → 𝑢 𝐸 )
206 205 10 csbiegf ( 𝐴 ∈ ( 𝑍 (,) 𝑊 ) → 𝐴 / 𝑢 𝐶 = 𝐸 )
207 204 206 syl ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 / 𝑢 𝐶 = 𝐸 )
208 207 oveq1d ( ( 𝜑𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐴 / 𝑢 𝐶 · 𝐵 ) = ( 𝐸 · 𝐵 ) )
209 208 itgeq2dv ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 / 𝑢 𝐶 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 )
210 3 ditgpos ( 𝜑 → ⨜ [ 𝑋𝑌 ] ( 𝐴 / 𝑢 𝐶 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 / 𝑢 𝐶 · 𝐵 ) d 𝑥 )
211 3 ditgpos ( 𝜑 → ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 · 𝐵 ) d 𝑥 )
212 209 210 211 3eqtr4d ( 𝜑 → ⨜ [ 𝑋𝑌 ] ( 𝐴 / 𝑢 𝐶 · 𝐵 ) d 𝑥 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )
213 201 212 syl5eqr ( 𝜑 → ⨜ [ 𝑋𝑌 ] ( 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 · 𝑦 / 𝑥 𝐵 ) d 𝑦 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )
214 213 adantr ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ 𝑋𝑌 ] ( 𝑦 / 𝑥 𝐴 / 𝑢 𝐶 · 𝑦 / 𝑥 𝐵 ) d 𝑦 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )
215 181 193 214 3eqtr3d ( ( 𝜑 ∧ ( ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) ) ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )
216 215 expr ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) 𝐴 ∈ ( 𝑚 (,) 𝑛 ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
217 144 216 sylbid ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∈ ( 𝑚 (,) 𝑛 ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
218 129 217 sylbid ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
219 117 218 syl5bir ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∧ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ) ) → ( ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
220 219 rexlimdvva ( 𝜑 → ( ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ( ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ∧ ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
221 116 220 syl5bi ( 𝜑 → ( ( ∃ 𝑛 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) < 𝑛 ∧ ∃ 𝑚 ∈ ( 𝑍 (,) 𝑊 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) 𝑚 < ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
222 68 113 221 syl2and ( 𝜑 → ( ( ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ∧ ∃ 𝑦 ∈ ( 𝑋 [,] 𝑌 ) ∀ 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ‘ 𝑧 ) ) → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 ) )
223 18 222 mpd ( 𝜑 → ⨜ [ 𝐾𝐿 ] 𝐶 d 𝑢 = ⨜ [ 𝑋𝑌 ] ( 𝐸 · 𝐵 ) d 𝑥 )