Metamath Proof Explorer


Theorem icccncfext

Description: A continuous function on a closed interval can be extended to a continuous function on the whole real line. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses icccncfext.1 _xF
icccncfext.2 J=topGenran.
icccncfext.3 Y=K
icccncfext.4 G=xifxABFxifx<AFAFB
icccncfext.5 φA
icccncfext.6 φB
icccncfext.7 φAB
icccncfext.8 φKTop
icccncfext.9 φFJ𝑡ABCnK
Assertion icccncfext φGJCnK𝑡ranFGAB=F

Proof

Step Hyp Ref Expression
1 icccncfext.1 _xF
2 icccncfext.2 J=topGenran.
3 icccncfext.3 Y=K
4 icccncfext.4 G=xifxABFxifx<AFAFB
5 icccncfext.5 φA
6 icccncfext.6 φB
7 icccncfext.7 φAB
8 icccncfext.8 φKTop
9 icccncfext.9 φFJ𝑡ABCnK
10 retopon topGenran.TopOn
11 2 10 eqeltri JTopOn
12 5 6 iccssred φAB
13 resttopon JTopOnABJ𝑡ABTopOnAB
14 11 12 13 sylancr φJ𝑡ABTopOnAB
15 8 3 jctir φKTopY=K
16 istopon KTopOnYKTopY=K
17 15 16 sylibr φKTopOnY
18 cnf2 J𝑡ABTopOnABKTopOnYFJ𝑡ABCnKF:ABY
19 14 17 9 18 syl3anc φF:ABY
20 19 ffnd φFFnAB
21 dffn3 FFnABF:ABranF
22 20 21 sylib φF:ABranF
23 22 ffvelcdmda φyABFyranF
24 fnfun FFnABFunF
25 20 24 syl φFunF
26 5 rexrd φA*
27 6 rexrd φB*
28 lbicc2 A*B*ABAAB
29 26 27 7 28 syl3anc φAAB
30 20 fndmd φdomF=AB
31 30 eqcomd φAB=domF
32 29 31 eleqtrd φAdomF
33 fvelrn FunFAdomFFAranF
34 25 32 33 syl2anc φFAranF
35 ubicc2 A*B*ABBAB
36 26 27 7 35 syl3anc φBAB
37 36 31 eleqtrd φBdomF
38 fvelrn FunFBdomFFBranF
39 25 37 38 syl2anc φFBranF
40 34 39 ifcld φify<AFAFBranF
41 40 adantr φ¬yABify<AFAFBranF
42 23 41 ifclda φifyABFyify<AFAFBranF
43 42 adantr φyifyABFyify<AFAFBranF
44 nfv yxAB
45 nfcv _yFx
46 nfcv _yifx<AFAFB
47 44 45 46 nfif _yifxABFxifx<AFAFB
48 nfv xyAB
49 nfcv _xy
50 1 49 nffv _xFy
51 nfv xy<A
52 nfcv _xA
53 1 52 nffv _xFA
54 nfcv _xB
55 1 54 nffv _xFB
56 51 53 55 nfif _xify<AFAFB
57 48 50 56 nfif _xifyABFyify<AFAFB
58 eleq1 x=yxAByAB
59 fveq2 x=yFx=Fy
60 breq1 x=yx<Ay<A
61 60 ifbid x=yifx<AFAFB=ify<AFAFB
62 58 59 61 ifbieq12d x=yifxABFxifx<AFAFB=ifyABFyify<AFAFB
63 47 57 62 cbvmpt xifxABFxifx<AFAFB=yifyABFyify<AFAFB
64 4 63 eqtri G=yifyABFyify<AFAFB
65 43 64 fmptd φG:ranF
66 65 adantr φyG:ranF
67 simplll φyuK𝑡ranFGyuφ
68 simplr φyuK𝑡ranFGyuuK𝑡ranF
69 67 68 jca φyuK𝑡ranFGyuφuK𝑡ranF
70 ssidd φranFranF
71 19 frnd φranFY
72 cnrest2 KTopOnYranFranFranFYFJ𝑡ABCnKFJ𝑡ABCnK𝑡ranF
73 17 70 71 72 syl3anc φFJ𝑡ABCnKFJ𝑡ABCnK𝑡ranF
74 9 73 mpbid φFJ𝑡ABCnK𝑡ranF
75 74 anim1i φuK𝑡ranFFJ𝑡ABCnK𝑡ranFuK𝑡ranF
76 cnima FJ𝑡ABCnK𝑡ranFuK𝑡ranFF-1uJ𝑡AB
77 69 75 76 3syl φyuK𝑡ranFGyuF-1uJ𝑡AB
78 retop topGenran.Top
79 2 78 eqeltri JTop
80 79 a1i φJTop
81 reex V
82 81 a1i φV
83 82 12 ssexd φABV
84 80 83 jca φJTopABV
85 67 84 syl φyuK𝑡ranFGyuJTopABV
86 elrest JTopABVF-1uJ𝑡ABwJF-1u=wAB
87 85 86 syl φyuK𝑡ranFGyuF-1uJ𝑡ABwJF-1u=wAB
88 77 87 mpbid φyuK𝑡ranFGyuwJF-1u=wAB
89 67 3ad2ant1 φyuK𝑡ranFGyuwJF-1u=wABφ
90 simpllr φyuK𝑡ranFGyuy
91 90 3ad2ant1 φyuK𝑡ranFGyuwJF-1u=wABy
92 simp1r φyuK𝑡ranFGyuwJF-1u=wABGyu
93 89 91 92 jca31 φyuK𝑡ranFGyuwJF-1u=wABφyGyu
94 simpll2 φyGyuwJF-1u=wABFAuFBuwJ
95 iooretop −∞AtopGenran.
96 95 2 eleqtrri −∞AJ
97 iooretop B+∞topGenran.
98 97 2 eleqtrri B+∞J
99 unopn JTop−∞AJB+∞J−∞AB+∞J
100 79 96 98 99 mp3an −∞AB+∞J
101 unopn JTopwJ−∞AB+∞Jw−∞AB+∞J
102 79 100 101 mp3an13 wJw−∞AB+∞J
103 94 102 syl φyGyuwJF-1u=wABFAuFBuw−∞AB+∞J
104 simpl1l φyGyuwJF-1u=wABFAuφy
105 104 adantr φyGyuwJF-1u=wABFAuFBuφy
106 simpl1r φyGyuwJF-1u=wABFAuGyu
107 106 adantr φyGyuwJF-1u=wABFAuFBuGyu
108 simpll3 φyGyuwJF-1u=wABFAuFBuF-1u=wAB
109 difreicc ABAB=−∞AB+∞
110 5 6 109 syl2anc φAB=−∞AB+∞
111 110 eqcomd φ−∞AB+∞=AB
112 111 eleq2d φy−∞AB+∞yAB
113 112 notbid φ¬y−∞AB+∞¬yAB
114 113 biimpa φ¬y−∞AB+∞¬yAB
115 eldif yABy¬yAB
116 114 115 sylnib φ¬y−∞AB+∞¬y¬yAB
117 imnan y¬¬yAB¬y¬yAB
118 116 117 sylibr φ¬y−∞AB+∞y¬¬yAB
119 118 imp φ¬y−∞AB+∞y¬¬yAB
120 119 notnotrd φ¬y−∞AB+∞yyAB
121 120 an32s φy¬y−∞AB+∞yAB
122 121 adantlr φyGyu¬y−∞AB+∞yAB
123 simplll φyGyu¬y−∞AB+∞φ
124 12 sselda φyABy
125 19 adantr φyABF:ABY
126 125 ffvelcdmda φyAByABFyY
127 19 29 ffvelcdmd φFAY
128 127 ad3antrrr φyAB¬yABy<AFAY
129 19 36 ffvelcdmd φFBY
130 129 ad3antrrr φyAB¬yAB¬y<AFBY
131 128 130 ifclda φyAB¬yABify<AFAFBY
132 126 131 ifclda φyABifyABFyify<AFAFBY
133 64 fvmpt2 yifyABFyify<AFAFBYGy=ifyABFyify<AFAFB
134 124 132 133 syl2anc φyABGy=ifyABFyify<AFAFB
135 simpr φyAByAB
136 135 iftrued φyABifyABFyify<AFAFB=Fy
137 134 136 eqtrd φyABGy=Fy
138 137 eqcomd φyABFy=Gy
139 123 122 138 syl2anc φyGyu¬y−∞AB+∞Fy=Gy
140 simplr φyGyu¬y−∞AB+∞Gyu
141 139 140 eqeltrd φyGyu¬y−∞AB+∞Fyu
142 123 20 syl φyGyu¬y−∞AB+∞FFnAB
143 elpreima FFnAByF-1uyABFyu
144 142 143 syl φyGyu¬y−∞AB+∞yF-1uyABFyu
145 122 141 144 mpbir2and φyGyu¬y−∞AB+∞yF-1u
146 145 adantlr φyGyuF-1u=wAB¬y−∞AB+∞yF-1u
147 simplr φyGyuF-1u=wAB¬y−∞AB+∞F-1u=wAB
148 146 147 eleqtrd φyGyuF-1u=wAB¬y−∞AB+∞ywAB
149 elin ywABywyAB
150 148 149 sylib φyGyuF-1u=wAB¬y−∞AB+∞ywyAB
151 150 simpld φyGyuF-1u=wAB¬y−∞AB+∞yw
152 151 ex φyGyuF-1u=wAB¬y−∞AB+∞yw
153 152 orrd φyGyuF-1u=wABy−∞AB+∞yw
154 153 orcomd φyGyuF-1u=wABywy−∞AB+∞
155 elun yw−∞AB+∞ywy−∞AB+∞
156 154 155 sylibr φyGyuF-1u=wAByw−∞AB+∞
157 105 107 108 156 syl21anc φyGyuwJF-1u=wABFAuFBuyw−∞AB+∞
158 imaundi Gw−∞AB+∞=GwG−∞AB+∞
159 105 simpld φyGyuwJF-1u=wABFAuFBuφ
160 toponss JTopOnwJw
161 11 94 160 sylancr φyGyuwJF-1u=wABFAuFBuw
162 159 161 108 jca31 φyGyuwJF-1u=wABFAuFBuφwF-1u=wAB
163 simplr φyGyuwJF-1u=wABFAuFBuFAu
164 simpr φyGyuwJF-1u=wABFAuFBuFBu
165 4 funmpt2 FunG
166 165 a1i φFunG
167 166 ad5antr φwF-1u=wABFAuFBuyGwFunG
168 fvelima FunGyGwzwGz=y
169 167 168 sylancom φwF-1u=wABFAuFBuyGwzwGz=y
170 eqcom Gz=yy=Gz
171 170 biimpi Gz=yy=Gz
172 171 3ad2ant3 φwF-1u=wABFAuFBuyGwzwGz=yy=Gz
173 simp1ll φwF-1u=wABFAuFBuyGwzwGz=yφwF-1u=wABFAu
174 simp1lr φwF-1u=wABFAuFBuyGwzwGz=yFBu
175 simp2 φwF-1u=wABFAuFBuyGwzwGz=yzw
176 simp-5l φwF-1u=wABFAuFBuzwzABφw
177 simp-5r φwF-1u=wABFAuFBuzwzABF-1u=wAB
178 simplr φwF-1u=wABFAuFBuzwzABzw
179 176 177 178 jca31 φwF-1u=wABFAuFBuzwzABφwF-1u=wABzw
180 eleq1 y=zyABzAB
181 180 anbi2d y=zφyABφzAB
182 fveq2 y=zGy=Gz
183 fveq2 y=zFy=Fz
184 182 183 eqeq12d y=zGy=FyGz=Fz
185 181 184 imbi12d y=zφyABGy=FyφzABGz=Fz
186 185 137 chvarvv φzABGz=Fz
187 186 ad4ant14 φF-1u=wABzwzABGz=Fz
188 187 adantl3r φwF-1u=wABzwzABGz=Fz
189 simp-4l φwF-1u=wABzwzABφ
190 simp-4r φwF-1u=wABzwzABw
191 simplr φF-1u=wABzwzABzw
192 simpr φF-1u=wABzwzABzAB
193 191 192 elind φF-1u=wABzwzABzwAB
194 eqcom F-1u=wABwAB=F-1u
195 194 biimpi F-1u=wABwAB=F-1u
196 195 ad3antlr φF-1u=wABzwzABwAB=F-1u
197 193 196 eleqtrd φF-1u=wABzwzABzF-1u
198 197 adantl3r φwF-1u=wABzwzABzF-1u
199 simpr φwzF-1uzF-1u
200 20 ad2antrr φwzF-1uFFnAB
201 elpreima FFnABzF-1uzABFzu
202 200 201 syl φwzF-1uzF-1uzABFzu
203 199 202 mpbid φwzF-1uzABFzu
204 203 simprd φwzF-1uFzu
205 189 190 198 204 syl21anc φwF-1u=wABzwzABFzu
206 188 205 eqeltrd φwF-1u=wABzwzABGzu
207 179 206 sylancom φwF-1u=wABFAuFBuzwzABGzu
208 simp-5l φwFAuFBuzw¬zABφ
209 simp-4r φwFAuFBuzw¬zABFAu
210 208 209 jca φwFAuFBuzw¬zABφFAu
211 simpllr φwFAuFBuzw¬zABFBu
212 simp-5r φwFAuFBuzw¬zABw
213 simplr φwFAuFBuzw¬zABzw
214 212 213 sseldd φwFAuFBuzw¬zABz
215 210 211 214 jca31 φwFAuFBuzw¬zABφFAuFBuz
216 64 a1i φFAuFBuz¬zABG=yifyABFyify<AFAFB
217 breq1 y=zy<Az<A
218 217 ifbid y=zify<AFAFB=ifz<AFAFB
219 180 183 218 ifbieq12d y=zifyABFyify<AFAFB=ifzABFzifz<AFAFB
220 219 adantl φFAuFBuz¬zABy=zifyABFyify<AFAFB=ifzABFzifz<AFAFB
221 simplr φFAuFBuz¬zABz
222 iffalse ¬zABifzABFzifz<AFAFB=ifz<AFAFB
223 222 adantl φFAuFBuz¬zABifzABFzifz<AFAFB=ifz<AFAFB
224 simp-5r φFAuFBuz¬zABz<AFAu
225 simp-4r φFAuFBuz¬zAB¬z<AFBu
226 224 225 ifclda φFAuFBuz¬zABifz<AFAFBu
227 223 226 eqeltrd φFAuFBuz¬zABifzABFzifz<AFAFBu
228 216 220 221 227 fvmptd φFAuFBuz¬zABGz=ifzABFzifz<AFAFB
229 228 223 eqtrd φFAuFBuz¬zABGz=ifz<AFAFB
230 229 226 eqeltrd φFAuFBuz¬zABGzu
231 215 230 sylancom φwFAuFBuzw¬zABGzu
232 231 adantl4r φwF-1u=wABFAuFBuzw¬zABGzu
233 207 232 pm2.61dan φwF-1u=wABFAuFBuzwGzu
234 173 174 175 233 syl21anc φwF-1u=wABFAuFBuyGwzwGz=yGzu
235 172 234 eqeltrd φwF-1u=wABFAuFBuyGwzwGz=yyu
236 235 rexlimdv3a φwF-1u=wABFAuFBuyGwzwGz=yyu
237 169 236 mpd φwF-1u=wABFAuFBuyGwyu
238 237 ex φwF-1u=wABFAuFBuyGwyu
239 238 alrimiv φwF-1u=wABFAuFBuyyGwyu
240 162 163 164 239 syl21anc φyGyuwJF-1u=wABFAuFBuyyGwyu
241 dfss2 GwuyyGwyu
242 240 241 sylibr φyGyuwJF-1u=wABFAuFBuGwu
243 imaundi G−∞AB+∞=G−∞AGB+∞
244 165 a1i φtG−∞AFunG
245 fvelima FunGtG−∞Az−∞AGz=t
246 244 245 sylancom φtG−∞Az−∞AGz=t
247 simp1l φtG−∞Az−∞AGz=tφ
248 simp2 φtG−∞Az−∞AGz=tz−∞A
249 simp3 φtG−∞Az−∞AGz=tGz=t
250 64 a1i φz−∞AG=yifyABFyify<AFAFB
251 219 adantl φz−∞Ay=zifyABFyify<AFAFB=ifzABFzifz<AFAFB
252 elioore z−∞Az
253 252 adantl φz−∞Az
254 elioo3g z−∞A−∞*A*z*−∞<zz<A
255 254 biimpi z−∞A−∞*A*z*−∞<zz<A
256 255 simprrd z−∞Az<A
257 256 adantl φz−∞Az<A
258 ltnle zAz<A¬Az
259 252 5 258 syl2anr φz−∞Az<A¬Az
260 257 259 mpbid φz−∞A¬Az
261 260 intn3an2d φz−∞A¬zAzzB
262 5 6 jca φAB
263 262 adantr φz−∞AAB
264 elicc2 ABzABzAzzB
265 263 264 syl φz−∞AzABzAzzB
266 261 265 mtbird φz−∞A¬zAB
267 266 iffalsed φz−∞AifzABFzifz<AFAFB=ifz<AFAFB
268 256 iftrued z−∞Aifz<AFAFB=FA
269 268 adantl φz−∞Aifz<AFAFB=FA
270 267 269 eqtrd φz−∞AifzABFzifz<AFAFB=FA
271 127 adantr φz−∞AFAY
272 270 271 eqeltrd φz−∞AifzABFzifz<AFAFBY
273 250 251 253 272 fvmptd φz−∞AGz=ifzABFzifz<AFAFB
274 273 adantr φz−∞AGz=tGz=ifzABFzifz<AFAFB
275 simpr φz−∞AGz=tGz=t
276 270 adantr φz−∞AGz=tifzABFzifz<AFAFB=FA
277 274 275 276 3eqtr3d φz−∞AGz=tt=FA
278 247 248 249 277 syl21anc φtG−∞Az−∞AGz=tt=FA
279 278 rexlimdv3a φtG−∞Az−∞AGz=tt=FA
280 246 279 mpd φtG−∞At=FA
281 velsn tFAt=FA
282 280 281 sylibr φtG−∞AtFA
283 282 ex φtG−∞AtFA
284 283 ssrdv φG−∞AFA
285 284 adantr φFAuG−∞AFA
286 simpr φFAuFAu
287 286 snssd φFAuFAu
288 285 287 sstrd φFAuG−∞Au
289 288 adantr φFAuFBuG−∞Au
290 fvelima FunGtGB+∞zB+∞Gz=t
291 166 290 sylan φtGB+∞zB+∞Gz=t
292 simp1l φtGB+∞zB+∞Gz=tφ
293 simp2 φtGB+∞zB+∞Gz=tzB+∞
294 simp3 φtGB+∞zB+∞Gz=tGz=t
295 64 a1i φzB+∞G=yifyABFyify<AFAFB
296 219 adantl φzB+∞y=zifyABFyify<AFAFB=ifzABFzifz<AFAFB
297 elioore zB+∞z
298 297 adantl φzB+∞z
299 19 ffvelcdmda φzABFzY
300 299 adantlr φzB+∞zABFzY
301 5 adantr φzB+∞A
302 6 adantr φzB+∞B
303 7 adantr φzB+∞AB
304 elioo3g zB+∞B*+∞*z*B<zz<+∞
305 304 biimpi zB+∞B*+∞*z*B<zz<+∞
306 305 simprld zB+∞B<z
307 306 adantl φzB+∞B<z
308 301 302 298 303 307 lelttrd φzB+∞A<z
309 301 298 308 ltnsymd φzB+∞¬z<A
310 309 iffalsed φzB+∞ifz<AFAFB=FB
311 129 adantr φzB+∞FBY
312 310 311 eqeltrd φzB+∞ifz<AFAFBY
313 312 adantr φzB+∞¬zABifz<AFAFBY
314 300 313 ifclda φzB+∞ifzABFzifz<AFAFBY
315 295 296 298 314 fvmptd φzB+∞Gz=ifzABFzifz<AFAFB
316 315 adantr φzB+∞Gz=tGz=ifzABFzifz<AFAFB
317 simpr φzB+∞Gz=tGz=t
318 302 298 ltnled φzB+∞B<z¬zB
319 307 318 mpbid φzB+∞¬zB
320 319 intn3an3d φzB+∞¬zAzzB
321 262 adantr φzB+∞AB
322 321 264 syl φzB+∞zABzAzzB
323 320 322 mtbird φzB+∞¬zAB
324 323 iffalsed φzB+∞ifzABFzifz<AFAFB=ifz<AFAFB
325 324 310 eqtrd φzB+∞ifzABFzifz<AFAFB=FB
326 325 adantr φzB+∞Gz=tifzABFzifz<AFAFB=FB
327 316 317 326 3eqtr3d φzB+∞Gz=tt=FB
328 292 293 294 327 syl21anc φtGB+∞zB+∞Gz=tt=FB
329 328 rexlimdv3a φtGB+∞zB+∞Gz=tt=FB
330 291 329 mpd φtGB+∞t=FB
331 velsn tFBt=FB
332 330 331 sylibr φtGB+∞tFB
333 332 ex φtGB+∞tFB
334 333 ssrdv φGB+∞FB
335 334 adantr φFBuGB+∞FB
336 simpr φFBuFBu
337 336 snssd φFBuFBu
338 335 337 sstrd φFBuGB+∞u
339 338 adantlr φFAuFBuGB+∞u
340 289 339 unssd φFAuFBuG−∞AGB+∞u
341 243 340 eqsstrid φFAuFBuG−∞AB+∞u
342 159 163 164 341 syl21anc φyGyuwJF-1u=wABFAuFBuG−∞AB+∞u
343 242 342 unssd φyGyuwJF-1u=wABFAuFBuGwG−∞AB+∞u
344 158 343 eqsstrid φyGyuwJF-1u=wABFAuFBuGw−∞AB+∞u
345 eleq2 v=w−∞AB+∞yvyw−∞AB+∞
346 imaeq2 v=w−∞AB+∞Gv=Gw−∞AB+∞
347 346 sseq1d v=w−∞AB+∞GvuGw−∞AB+∞u
348 345 347 anbi12d v=w−∞AB+∞yvGvuyw−∞AB+∞Gw−∞AB+∞u
349 348 rspcev w−∞AB+∞Jyw−∞AB+∞Gw−∞AB+∞uvJyvGvu
350 103 157 344 349 syl12anc φyGyuwJF-1u=wABFAuFBuvJyvGvu
351 79 a1i wJJTop
352 iooretop −∞BtopGenran.
353 352 2 eleqtrri −∞BJ
354 inopn JTopwJ−∞BJw−∞BJ
355 79 353 354 mp3an13 wJw−∞BJ
356 96 a1i wJ−∞AJ
357 unopn JTopw−∞BJ−∞AJw−∞B−∞AJ
358 351 355 356 357 syl3anc wJw−∞B−∞AJ
359 358 3ad2ant2 φyGyuwJF-1u=wABw−∞B−∞AJ
360 359 ad2antrr φyGyuwJF-1u=wABFAu¬FBuw−∞B−∞AJ
361 simpll1 φyGyuwJF-1u=wABFAu¬FBuφyGyu
362 simpll3 φyGyuwJF-1u=wABFAu¬FBuF-1u=wAB
363 simpr φyGyuwJF-1u=wABFAu¬FBu¬FBu
364 simpll φyGyuF-1u=wAB¬FBu¬y−∞AφyGyuF-1u=wAB
365 262 ad3antrrr φyGyu¬FBuAB
366 eqimss AB=−∞AB+∞AB−∞AB+∞
367 109 366 syl ABAB−∞AB+∞
368 difcom AB−∞AB+∞−∞AB+∞AB
369 367 368 sylib AB−∞AB+∞AB
370 365 369 syl φyGyu¬FBu−∞AB+∞AB
371 370 adantr φyGyu¬FBu¬y−∞A−∞AB+∞AB
372 simp-4r φyGyu¬FBu¬y−∞Ay
373 simpr φyGyu¬FBu¬y−∞A¬y−∞A
374 elioore yB+∞y
375 374 adantl φyB+∞y
376 elioo3g yB+∞B*+∞*y*B<yy<+∞
377 376 biimpi yB+∞B*+∞*y*B<yy<+∞
378 377 simprld yB+∞B<y
379 378 adantl φyB+∞B<y
380 6 adantr φyB+∞B
381 380 375 ltnled φyB+∞B<y¬yB
382 379 381 mpbid φyB+∞¬yB
383 382 intn3an3d φyB+∞¬yAyyB
384 262 adantr φyB+∞AB
385 elicc2 AByAByAyyB
386 384 385 syl φyB+∞yAByAyyB
387 383 386 mtbird φyB+∞¬yAB
388 387 iffalsed φyB+∞ifyABFyify<AFAFB=ify<AFAFB
389 5 adantr φyB+∞A
390 7 adantr φyB+∞AB
391 389 380 375 390 379 lelttrd φyB+∞A<y
392 389 375 391 ltnsymd φyB+∞¬y<A
393 392 iffalsed φyB+∞ify<AFAFB=FB
394 388 393 eqtrd φyB+∞ifyABFyify<AFAFB=FB
395 129 adantr φyB+∞FBY
396 394 395 eqeltrd φyB+∞ifyABFyify<AFAFBY
397 375 396 133 syl2anc φyB+∞Gy=ifyABFyify<AFAFB
398 397 394 eqtrd φyB+∞Gy=FB
399 398 eqcomd φyB+∞FB=Gy
400 399 adantlr φGyuyB+∞FB=Gy
401 simplr φGyuyB+∞Gyu
402 400 401 eqeltrd φGyuyB+∞FBu
403 402 adantllr φyGyuyB+∞FBu
404 403 stoic1a φyGyu¬FBu¬yB+∞
405 404 adantr φyGyu¬FBu¬y−∞A¬yB+∞
406 ioran ¬y−∞AyB+∞¬y−∞A¬yB+∞
407 373 405 406 sylanbrc φyGyu¬FBu¬y−∞A¬y−∞AyB+∞
408 elun y−∞AB+∞y−∞AyB+∞
409 407 408 sylnibr φyGyu¬FBu¬y−∞A¬y−∞AB+∞
410 372 409 eldifd φyGyu¬FBu¬y−∞Ay−∞AB+∞
411 371 410 sseldd φyGyu¬FBu¬y−∞AyAB
412 411 adantllr φyGyuF-1u=wAB¬FBu¬y−∞AyAB
413 simp-4l φyGyuF-1u=wAByABφ
414 simpllr φyGyuF-1u=wAByABGyu
415 simpr φyGyuF-1u=wAByAByAB
416 simpr φGyuyAByAB
417 138 adantlr φGyuyABFy=Gy
418 simplr φGyuyABGyu
419 417 418 eqeltrd φGyuyABFyu
420 20 ad2antrr φGyuyABFFnAB
421 420 143 syl φGyuyAByF-1uyABFyu
422 416 419 421 mpbir2and φGyuyAByF-1u
423 413 414 415 422 syl21anc φyGyuF-1u=wAByAByF-1u
424 simplr φyGyuF-1u=wAByABF-1u=wAB
425 423 424 eleqtrd φyGyuF-1u=wAByABywAB
426 elinel1 ywAByw
427 425 426 syl φyGyuF-1u=wAByAByw
428 364 412 427 syl2anc φyGyuF-1u=wAB¬FBu¬y−∞Ayw
429 simp-4l φyGyuF-1u=wAB¬FBu¬y−∞Aφy
430 simp-4r φyGyuF-1u=wAB¬FBu¬y−∞AGyu
431 simplr φyGyuF-1u=wAB¬FBu¬y−∞A¬FBu
432 simpl φy=Bφ
433 simpr φy=By=B
434 36 adantr φy=BBAB
435 433 434 eqeltrd φy=ByAB
436 432 435 137 syl2anc φy=BGy=Fy
437 433 fveq2d φy=BFy=FB
438 436 437 eqtrd φy=BGy=FB
439 438 ad4ant14 φy¬y−∞By=BGy=FB
440 simplll φy¬y−∞B¬y=Bφ
441 27 adantr φyB*
442 pnfxr +∞*
443 442 a1i φy+∞*
444 rexr yy*
445 444 adantl φyy*
446 441 443 445 3jca φyB*+∞*y*
447 446 ad2antrr φy¬y−∞B¬y=BB*+∞*y*
448 mnflt y−∞<y
449 448 ad2antlr φy¬y−∞B−∞<y
450 mnfxr −∞*
451 450 a1i φy−∞*
452 451 441 445 3jca φy−∞*B*y*
453 elioo3g y−∞B−∞*B*y*−∞<yy<B
454 453 notbii ¬y−∞B¬−∞*B*y*−∞<yy<B
455 454 biimpi ¬y−∞B¬−∞*B*y*−∞<yy<B
456 455 adantl φy¬y−∞B¬−∞*B*y*−∞<yy<B
457 nan φy¬y−∞B¬−∞*B*y*−∞<yy<Bφy¬y−∞B−∞*B*y*¬−∞<yy<B
458 456 457 mpbi φy¬y−∞B−∞*B*y*¬−∞<yy<B
459 452 458 mpidan φy¬y−∞B¬−∞<yy<B
460 nan φy¬y−∞B¬−∞<yy<Bφy¬y−∞B−∞<y¬y<B
461 459 460 mpbi φy¬y−∞B−∞<y¬y<B
462 449 461 mpdan φy¬y−∞B¬y<B
463 462 anim1i φy¬y−∞B¬y=B¬y<B¬y=B
464 pm4.56 ¬y<B¬y=B¬y<By=B
465 463 464 sylib φy¬y−∞B¬y=B¬y<By=B
466 simpr φyy
467 6 adantr φyB
468 466 467 jca φyyB
469 468 ad2antrr φy¬y−∞B¬y=ByB
470 leloe yByBy<By=B
471 469 470 syl φy¬y−∞B¬y=ByBy<By=B
472 465 471 mtbird φy¬y−∞B¬y=B¬yB
473 6 anim1i φyBy
474 473 ad2antrr φy¬y−∞B¬y=BBy
475 ltnle ByB<y¬yB
476 474 475 syl φy¬y−∞B¬y=BB<y¬yB
477 472 476 mpbird φy¬y−∞B¬y=BB<y
478 simpllr φy¬y−∞B¬y=By
479 478 ltpnfd φy¬y−∞B¬y=By<+∞
480 477 479 jca φy¬y−∞B¬y=BB<yy<+∞
481 447 480 376 sylanbrc φy¬y−∞B¬y=ByB+∞
482 440 481 398 syl2anc φy¬y−∞B¬y=BGy=FB
483 439 482 pm2.61dan φy¬y−∞BGy=FB
484 483 eqcomd φy¬y−∞BFB=Gy
485 484 adantlr φyGyu¬y−∞BFB=Gy
486 simplr φyGyu¬y−∞BGyu
487 485 486 eqeltrd φyGyu¬y−∞BFBu
488 487 stoic1a φyGyu¬FBu¬¬y−∞B
489 488 notnotrd φyGyu¬FBuy−∞B
490 429 430 431 489 syl21anc φyGyuF-1u=wAB¬FBu¬y−∞Ay−∞B
491 428 490 elind φyGyuF-1u=wAB¬FBu¬y−∞Ayw−∞B
492 491 ex φyGyuF-1u=wAB¬FBu¬y−∞Ayw−∞B
493 492 orrd φyGyuF-1u=wAB¬FBuy−∞Ayw−∞B
494 493 orcomd φyGyuF-1u=wAB¬FBuyw−∞By−∞A
495 elun yw−∞B−∞Ayw−∞By−∞A
496 494 495 sylibr φyGyuF-1u=wAB¬FBuyw−∞B−∞A
497 361 362 363 496 syl21anc φyGyuwJF-1u=wABFAu¬FBuyw−∞B−∞A
498 104 simpld φyGyuwJF-1u=wABFAuφ
499 498 adantr φyGyuwJF-1u=wABFAu¬FBuφ
500 simpll2 φyGyuwJF-1u=wABFAu¬FBuwJ
501 11 500 160 sylancr φyGyuwJF-1u=wABFAu¬FBuw
502 499 501 jca φyGyuwJF-1u=wABFAu¬FBuφw
503 simplr φyGyuwJF-1u=wABFAu¬FBuFAu
504 65 ffnd φGFn
505 504 ad3antrrr φwF-1u=wABFAuGFn
506 ssinss1 ww−∞B
507 506 ad3antlr φwF-1u=wABFAuw−∞B
508 ioossre −∞A
509 508 a1i φwF-1u=wABFAu−∞A
510 unima GFnw−∞B−∞AGw−∞B−∞A=Gw−∞BG−∞A
511 505 507 509 510 syl3anc φwF-1u=wABFAuGw−∞B−∞A=Gw−∞BG−∞A
512 165 a1i φwF-1u=wABFAuyGw−∞BFunG
513 fvelima FunGyGw−∞Bzw−∞BGz=y
514 512 513 sylancom φwF-1u=wABFAuyGw−∞Bzw−∞BGz=y
515 171 3ad2ant3 φwF-1u=wABFAuzw−∞BGz=yy=Gz
516 simp-5l φwF-1u=wABFAuzw−∞Bz−∞Aφ
517 simpllr φwF-1u=wABFAuzw−∞Bz−∞AFAu
518 simpr φwF-1u=wABFAuzw−∞Bz−∞Az−∞A
519 273 267 269 3eqtrd φz−∞AGz=FA
520 519 3adant2 φFAuz−∞AGz=FA
521 simp2 φFAuz−∞AFAu
522 520 521 eqeltrd φFAuz−∞AGzu
523 516 517 518 522 syl3anc φwF-1u=wABFAuzw−∞Bz−∞AGzu
524 simplll φwF-1u=wABFAuzw−∞B¬z−∞AφwF-1u=wAB
525 simp-5l φwF-1u=wABFAuzw−∞B¬z−∞Aφ
526 simplr φwF-1u=wABFAuzw−∞B¬z−∞Azw−∞B
527 simpr φwF-1u=wABFAuzw−∞B¬z−∞A¬z−∞A
528 elinel1 zw−∞Bzw
529 528 3ad2ant2 φzw−∞B¬z−∞Azw
530 elinel2 zw−∞Bz−∞B
531 elioore z−∞Bz
532 530 531 syl zw−∞Bz
533 532 3ad2ant2 φzw−∞B¬z−∞Az
534 26 3ad2ant1 φzw−∞B¬z−∞AA*
535 533 rexrd φzw−∞B¬z−∞Az*
536 mnflt z−∞<z
537 533 536 syl φzw−∞B¬z−∞A−∞<z
538 450 a1i φzw−∞B¬z−∞A−∞*
539 538 534 535 3jca φzw−∞B¬z−∞A−∞*A*z*
540 simp3 φzw−∞B¬z−∞A¬z−∞A
541 540 254 sylnib φzw−∞B¬z−∞A¬−∞*A*z*−∞<zz<A
542 nan φzw−∞B¬z−∞A¬−∞*A*z*−∞<zz<Aφzw−∞B¬z−∞A−∞*A*z*¬−∞<zz<A
543 541 542 mpbi φzw−∞B¬z−∞A−∞*A*z*¬−∞<zz<A
544 539 543 mpdan φzw−∞B¬z−∞A¬−∞<zz<A
545 nan φzw−∞B¬z−∞A¬−∞<zz<Aφzw−∞B¬z−∞A−∞<z¬z<A
546 544 545 mpbi φzw−∞B¬z−∞A−∞<z¬z<A
547 537 546 mpdan φzw−∞B¬z−∞A¬z<A
548 534 535 547 xrnltled φzw−∞B¬z−∞AAz
549 simp1 φzw−∞B¬z−∞Aφ
550 530 3ad2ant2 φzw−∞B¬z−∞Az−∞B
551 531 adantl φz−∞Bz
552 6 adantr φz−∞BB
553 elioo3g z−∞B−∞*B*z*−∞<zz<B
554 553 biimpi z−∞B−∞*B*z*−∞<zz<B
555 554 simprrd z−∞Bz<B
556 555 adantl φz−∞Bz<B
557 551 552 556 ltled φz−∞BzB
558 549 550 557 syl2anc φzw−∞B¬z−∞AzB
559 262 3ad2ant1 φzw−∞B¬z−∞AAB
560 559 264 syl φzw−∞B¬z−∞AzABzAzzB
561 533 548 558 560 mpbir3and φzw−∞B¬z−∞AzAB
562 529 561 elind φzw−∞B¬z−∞AzwAB
563 525 526 527 562 syl3anc φwF-1u=wABFAuzw−∞B¬z−∞AzwAB
564 elinel2 zwABzAB
565 564 anim2i φzwABφzAB
566 565 adantlr φF-1u=wABzwABφzAB
567 566 186 syl φF-1u=wABzwABGz=Fz
568 20 ad2antrr φF-1u=wABzwABFFnAB
569 simpr F-1u=wABzwABzwAB
570 195 adantr F-1u=wABzwABwAB=F-1u
571 569 570 eleqtrd F-1u=wABzwABzF-1u
572 571 adantll φF-1u=wABzwABzF-1u
573 201 simplbda FFnABzF-1uFzu
574 568 572 573 syl2anc φF-1u=wABzwABFzu
575 567 574 eqeltrd φF-1u=wABzwABGzu
576 575 adantllr φwF-1u=wABzwABGzu
577 524 563 576 syl2anc φwF-1u=wABFAuzw−∞B¬z−∞AGzu
578 523 577 pm2.61dan φwF-1u=wABFAuzw−∞BGzu
579 578 3adant3 φwF-1u=wABFAuzw−∞BGz=yGzu
580 515 579 eqeltrd φwF-1u=wABFAuzw−∞BGz=yyu
581 580 3adant1r φwF-1u=wABFAuyGw−∞Bzw−∞BGz=yyu
582 581 rexlimdv3a φwF-1u=wABFAuyGw−∞Bzw−∞BGz=yyu
583 514 582 mpd φwF-1u=wABFAuyGw−∞Byu
584 583 ex φwF-1u=wABFAuyGw−∞Byu
585 584 ssrdv φwF-1u=wABFAuGw−∞Bu
586 288 ad4ant14 φwF-1u=wABFAuG−∞Au
587 585 586 unssd φwF-1u=wABFAuGw−∞BG−∞Au
588 511 587 eqsstrd φwF-1u=wABFAuGw−∞B−∞Au
589 502 362 503 588 syl21anc φyGyuwJF-1u=wABFAu¬FBuGw−∞B−∞Au
590 eleq2 v=w−∞B−∞Ayvyw−∞B−∞A
591 imaeq2 v=w−∞B−∞AGv=Gw−∞B−∞A
592 591 sseq1d v=w−∞B−∞AGvuGw−∞B−∞Au
593 590 592 anbi12d v=w−∞B−∞AyvGvuyw−∞B−∞AGw−∞B−∞Au
594 593 rspcev w−∞B−∞AJyw−∞B−∞AGw−∞B−∞AuvJyvGvu
595 360 497 589 594 syl12anc φyGyuwJF-1u=wABFAu¬FBuvJyvGvu
596 350 595 pm2.61dan φyGyuwJF-1u=wABFAuvJyvGvu
597 simpll2 φyGyuwJF-1u=wAB¬FAuFBuwJ
598 iooretop A+∞topGenran.
599 598 2 eleqtrri A+∞J
600 inopn JTopwJA+∞JwA+∞J
601 79 599 600 mp3an13 wJwA+∞J
602 98 a1i wJB+∞J
603 unopn JTopwA+∞JB+∞JwA+∞B+∞J
604 351 601 602 603 syl3anc wJwA+∞B+∞J
605 597 604 syl φyGyuwJF-1u=wAB¬FAuFBuwA+∞B+∞J
606 simplll φyGyuF-1u=wAB¬FAu¬yB+∞φyGyu
607 606 simpld φyGyuF-1u=wAB¬FAu¬yB+∞φy
608 607 simpld φyGyuF-1u=wAB¬FAu¬yB+∞φ
609 simp-4r φyGyuF-1u=wAB¬FAu¬yB+∞Gyu
610 simp-5r φyGyuF-1u=wAB¬FAu¬yB+∞y
611 simplr φyGyuF-1u=wAB¬FAu¬yB+∞¬FAu
612 simpll φyy<Aφ
613 26 adantr φyA*
614 451 613 445 3jca φy−∞*A*y*
615 614 adantr φyy<A−∞*A*y*
616 448 anim1i yy<A−∞<yy<A
617 616 adantll φyy<A−∞<yy<A
618 elioo3g y−∞A−∞*A*y*−∞<yy<A
619 615 617 618 sylanbrc φyy<Ay−∞A
620 eleq1 z=yz−∞Ay−∞A
621 620 anbi2d z=yφz−∞Aφy−∞A
622 fveq2 z=yGz=Gy
623 622 eqeq1d z=yGz=FAGy=FA
624 621 623 imbi12d z=yφz−∞AGz=FAφy−∞AGy=FA
625 624 519 chvarvv φy−∞AGy=FA
626 612 619 625 syl2anc φyy<AGy=FA
627 626 eqcomd φyy<AFA=Gy
628 627 ad4ant14 φyGyu¬FAuy<AFA=Gy
629 simpllr φyGyu¬FAuy<AGyu
630 628 629 eqeltrd φyGyu¬FAuy<AFAu
631 simplr φyGyu¬FAuy<A¬FAu
632 630 631 pm2.65da φyGyu¬FAu¬y<A
633 5 anim1i φyAy
634 633 ad2antrr φyGyu¬FAuAy
635 lenlt AyAy¬y<A
636 634 635 syl φyGyu¬FAuAy¬y<A
637 632 636 mpbird φyGyu¬FAuAy
638 606 611 637 syl2anc φyGyuF-1u=wAB¬FAu¬yB+∞Ay
639 ltpnf yy<+∞
640 639 ad2antlr φy¬yB+∞y<+∞
641 446 adantr φy¬yB+∞B*+∞*y*
642 376 notbii ¬yB+∞¬B*+∞*y*B<yy<+∞
643 642 biimpi ¬yB+∞¬B*+∞*y*B<yy<+∞
644 643 adantl φy¬yB+∞¬B*+∞*y*B<yy<+∞
645 imnan B*+∞*y*¬B<yy<+∞¬B*+∞*y*B<yy<+∞
646 644 645 sylibr φy¬yB+∞B*+∞*y*¬B<yy<+∞
647 641 646 mpd φy¬yB+∞¬B<yy<+∞
648 ancom B<yy<+∞y<+∞B<y
649 647 648 sylnib φy¬yB+∞¬y<+∞B<y
650 imnan y<+∞¬B<y¬y<+∞B<y
651 649 650 sylibr φy¬yB+∞y<+∞¬B<y
652 640 651 mpd φy¬yB+∞¬B<y
653 468 adantr φy¬yB+∞yB
654 lenlt yByB¬B<y
655 653 654 syl φy¬yB+∞yB¬B<y
656 652 655 mpbird φy¬yB+∞yB
657 607 656 sylancom φyGyuF-1u=wAB¬FAu¬yB+∞yB
658 262 ad5antr φyGyuF-1u=wAB¬FAu¬yB+∞AB
659 658 385 syl φyGyuF-1u=wAB¬FAu¬yB+∞yAByAyyB
660 610 638 657 659 mpbir3and φyGyuF-1u=wAB¬FAu¬yB+∞yAB
661 608 609 660 422 syl21anc φyGyuF-1u=wAB¬FAu¬yB+∞yF-1u
662 simpllr φyGyuF-1u=wAB¬FAu¬yB+∞F-1u=wAB
663 661 662 eleqtrd φyGyuF-1u=wAB¬FAu¬yB+∞ywAB
664 663 426 syl φyGyuF-1u=wAB¬FAu¬yB+∞yw
665 fveq2 y=AGy=GA
666 29 ancli φφAAB
667 eleq1 y=AyABAAB
668 667 anbi2d y=AφyABφAAB
669 fveq2 y=AFy=FA
670 665 669 eqeq12d y=AGy=FyGA=FA
671 668 670 imbi12d y=AφyABGy=FyφAABGA=FA
672 671 137 vtoclg AφAABGA=FA
673 5 666 672 sylc φGA=FA
674 665 673 sylan9eqr φy=AGy=FA
675 674 ad4ant14 φy¬yA+∞y=AGy=FA
676 simplll φy¬yA+∞¬y=Aφ
677 614 ad2antrr φy¬yA+∞¬y=A−∞*A*y*
678 448 ad3antlr φy¬yA+∞¬y=A−∞<y
679 simpllr φy¬yA+∞¬y=Ay
680 676 5 syl φy¬yA+∞¬y=AA
681 445 adantr φy¬yA+∞y*
682 26 ad2antrr φy¬yA+∞A*
683 639 ad2antlr φy¬yA+∞y<+∞
684 simpr φy¬yA+∞¬yA+∞
685 442 a1i φy¬yA+∞+∞*
686 682 685 681 3jca φy¬yA+∞A*+∞*y*
687 elioo3g yA+∞A*+∞*y*A<yy<+∞
688 687 notbii ¬yA+∞¬A*+∞*y*A<yy<+∞
689 688 biimpi ¬yA+∞¬A*+∞*y*A<yy<+∞
690 nan ¬yA+∞¬A*+∞*y*A<yy<+∞¬yA+∞A*+∞*y*¬A<yy<+∞
691 689 690 mpbi ¬yA+∞A*+∞*y*¬A<yy<+∞
692 684 686 691 syl2anc φy¬yA+∞¬A<yy<+∞
693 ancom A<yy<+∞y<+∞A<y
694 692 693 sylnib φy¬yA+∞¬y<+∞A<y
695 nan φy¬yA+∞¬y<+∞A<yφy¬yA+∞y<+∞¬A<y
696 694 695 mpbi φy¬yA+∞y<+∞¬A<y
697 683 696 mpdan φy¬yA+∞¬A<y
698 681 682 697 xrnltled φy¬yA+∞yA
699 698 adantr φy¬yA+∞¬y=AyA
700 neqne ¬y=AyA
701 700 necomd ¬y=AAy
702 701 adantl φy¬yA+∞¬y=AAy
703 679 680 699 702 leneltd φy¬yA+∞¬y=Ay<A
704 678 703 jca φy¬yA+∞¬y=A−∞<yy<A
705 677 704 618 sylanbrc φy¬yA+∞¬y=Ay−∞A
706 676 705 625 syl2anc φy¬yA+∞¬y=AGy=FA
707 675 706 pm2.61dan φy¬yA+∞Gy=FA
708 707 eqcomd φy¬yA+∞FA=Gy
709 708 ad4ant14 φyGyu¬FAu¬yA+∞FA=Gy
710 simpllr φyGyu¬FAu¬yA+∞Gyu
711 709 710 eqeltrd φyGyu¬FAu¬yA+∞FAu
712 simplr φyGyu¬FAu¬yA+∞¬FAu
713 711 712 condan φyGyu¬FAuyA+∞
714 606 611 713 syl2anc φyGyuF-1u=wAB¬FAu¬yB+∞yA+∞
715 664 714 elind φyGyuF-1u=wAB¬FAu¬yB+∞ywA+∞
716 715 adantlr φyGyuF-1u=wAB¬FAuFBu¬yB+∞ywA+∞
717 pm5.6 φyGyuF-1u=wAB¬FAuFBu¬yB+∞ywA+∞φyGyuF-1u=wAB¬FAuFBuyB+∞ywA+∞
718 716 717 mpbi φyGyuF-1u=wAB¬FAuFBuyB+∞ywA+∞
719 718 orcomd φyGyuF-1u=wAB¬FAuFBuywA+∞yB+∞
720 elun ywA+∞B+∞ywA+∞yB+∞
721 719 720 sylibr φyGyuF-1u=wAB¬FAuFBuywA+∞B+∞
722 721 3adantll2 φyGyuwJF-1u=wAB¬FAuFBuywA+∞B+∞
723 simp1ll φyGyuwJF-1u=wABφ
724 723 ad2antrr φyGyuwJF-1u=wAB¬FAuFBuφ
725 simpll3 φyGyuwJF-1u=wAB¬FAuFBuF-1u=wAB
726 simpr φyGyuwJF-1u=wAB¬FAuFBuFBu
727 504 ad2antrr φF-1u=wABFBuGFn
728 ioossre A+∞
729 728 olci wA+∞
730 inss wA+∞wA+∞
731 729 730 ax-mp wA+∞
732 731 a1i φF-1u=wABFBuwA+∞
733 ioossre B+∞
734 733 a1i φF-1u=wABFBuB+∞
735 unima GFnwA+∞B+∞GwA+∞B+∞=GwA+∞GB+∞
736 727 732 734 735 syl3anc φF-1u=wABFBuGwA+∞B+∞=GwA+∞GB+∞
737 simpll φywA+∞B<yφ
738 731 sseli ywA+∞y
739 738 ad2antlr φywA+∞B<yy
740 737 739 446 syl2anc φywA+∞B<yB*+∞*y*
741 simpr ywA+∞B<yB<y
742 738 ltpnfd ywA+∞y<+∞
743 742 adantr ywA+∞B<yy<+∞
744 741 743 jca ywA+∞B<yB<yy<+∞
745 744 adantll φywA+∞B<yB<yy<+∞
746 740 745 376 sylanbrc φywA+∞B<yyB+∞
747 737 746 398 syl2anc φywA+∞B<yGy=FB
748 747 adantllr φFBuywA+∞B<yGy=FB
749 simpllr φFBuywA+∞B<yFBu
750 748 749 eqeltrd φFBuywA+∞B<yGyu
751 750 adantl3r φF-1u=wABFBuywA+∞B<yGyu
752 simp-4l φF-1u=wABFBuywA+∞¬B<yφ
753 simplr φF-1u=wABFBuywA+∞¬B<yywA+∞
754 simpr φF-1u=wABFBuywA+∞¬B<y¬B<y
755 simpll φywA+∞¬B<yφ
756 738 adantl φywA+∞y
757 756 adantr φywA+∞¬B<yy
758 5 adantr φywA+∞A
759 elinel2 ywA+∞yA+∞
760 687 biimpi yA+∞A*+∞*y*A<yy<+∞
761 760 simprld yA+∞A<y
762 759 761 syl ywA+∞A<y
763 762 adantl φywA+∞A<y
764 758 756 763 ltled φywA+∞Ay
765 764 adantr φywA+∞¬B<yAy
766 simpr φywA+∞¬B<y¬B<y
767 755 757 468 syl2anc φywA+∞¬B<yyB
768 767 654 syl φywA+∞¬B<yyB¬B<y
769 766 768 mpbird φywA+∞¬B<yyB
770 262 ad2antrr φywA+∞¬B<yAB
771 770 385 syl φywA+∞¬B<yyAByAyyB
772 757 765 769 771 mpbir3and φywA+∞¬B<yyAB
773 755 772 137 syl2anc φywA+∞¬B<yGy=Fy
774 752 753 754 773 syl21anc φF-1u=wABFBuywA+∞¬B<yGy=Fy
775 elinel1 ywA+∞yw
776 775 ad2antlr φywA+∞¬B<yyw
777 776 772 jca φywA+∞¬B<yywyAB
778 777 adantllr φF-1u=wABywA+∞¬B<yywyAB
779 778 149 sylibr φF-1u=wABywA+∞¬B<yywAB
780 195 ad3antlr φF-1u=wABywA+∞¬B<ywAB=F-1u
781 779 780 eleqtrd φF-1u=wABywA+∞¬B<yyF-1u
782 20 ad3antrrr φF-1u=wABywA+∞¬B<yFFnAB
783 782 143 syl φF-1u=wABywA+∞¬B<yyF-1uyABFyu
784 781 783 mpbid φF-1u=wABywA+∞¬B<yyABFyu
785 784 simprd φF-1u=wABywA+∞¬B<yFyu
786 785 adantllr φF-1u=wABFBuywA+∞¬B<yFyu
787 774 786 eqeltrd φF-1u=wABFBuywA+∞¬B<yGyu
788 751 787 pm2.61dan φF-1u=wABFBuywA+∞Gyu
789 788 ralrimiva φF-1u=wABFBuywA+∞Gyu
790 504 fndmd φdomG=
791 731 790 sseqtrrid φwA+∞domG
792 166 791 jca φFunGwA+∞domG
793 792 ad2antrr φF-1u=wABFBuFunGwA+∞domG
794 funimass4 FunGwA+∞domGGwA+∞uywA+∞Gyu
795 793 794 syl φF-1u=wABFBuGwA+∞uywA+∞Gyu
796 789 795 mpbird φF-1u=wABFBuGwA+∞u
797 338 adantlr φF-1u=wABFBuGB+∞u
798 796 797 unssd φF-1u=wABFBuGwA+∞GB+∞u
799 736 798 eqsstrd φF-1u=wABFBuGwA+∞B+∞u
800 724 725 726 799 syl21anc φyGyuwJF-1u=wAB¬FAuFBuGwA+∞B+∞u
801 eleq2 v=wA+∞B+∞yvywA+∞B+∞
802 imaeq2 v=wA+∞B+∞Gv=GwA+∞B+∞
803 802 sseq1d v=wA+∞B+∞GvuGwA+∞B+∞u
804 801 803 anbi12d v=wA+∞B+∞yvGvuywA+∞B+∞GwA+∞B+∞u
805 804 rspcev wA+∞B+∞JywA+∞B+∞GwA+∞B+∞uvJyvGvu
806 605 722 800 805 syl12anc φyGyuwJF-1u=wAB¬FAuFBuvJyvGvu
807 simpll2 φyGyuwJF-1u=wAB¬FAu¬FBuwJ
808 iooretop ABtopGenran.
809 808 2 eleqtrri ABJ
810 inopn JTopwJABJwABJ
811 79 809 810 mp3an13 wJwABJ
812 807 811 syl φyGyuwJF-1u=wAB¬FAu¬FBuwABJ
813 simp-4r φyGyu¬FAu¬FBuy
814 637 adantr φyGyu¬FAu¬FBuAy
815 simpll φyGyu¬FBuφy
816 815 404 656 syl2anc φyGyu¬FBuyB
817 816 adantlr φyGyu¬FAu¬FBuyB
818 simp-4l φyGyu¬FAu¬FBuφ
819 818 262 syl φyGyu¬FAu¬FBuAB
820 819 385 syl φyGyu¬FAu¬FBuyAByAyyB
821 813 814 817 820 mpbir3and φyGyu¬FAu¬FBuyAB
822 821 adantllr φyGyuF-1u=wAB¬FAu¬FBuyAB
823 818 821 137 syl2anc φyGyu¬FAu¬FBuGy=Fy
824 823 adantllr φyGyuF-1u=wAB¬FAu¬FBuGy=Fy
825 simp-4r φyGyuF-1u=wAB¬FAu¬FBuGyu
826 824 825 eqeltrrd φyGyuF-1u=wAB¬FAu¬FBuFyu
827 simp-5l φyGyuF-1u=wAB¬FAu¬FBuφ
828 827 20 syl φyGyuF-1u=wAB¬FAu¬FBuFFnAB
829 828 143 syl φyGyuF-1u=wAB¬FAu¬FBuyF-1uyABFyu
830 822 826 829 mpbir2and φyGyuF-1u=wAB¬FAu¬FBuyF-1u
831 simpllr φyGyuF-1u=wAB¬FAu¬FBuF-1u=wAB
832 830 831 eleqtrd φyGyuF-1u=wAB¬FAu¬FBuywAB
833 832 426 syl φyGyuF-1u=wAB¬FAu¬FBuyw
834 simp-5r φyGyuF-1u=wAB¬FAu¬FBuy
835 827 834 822 jca31 φyGyuF-1u=wAB¬FAu¬FBuφyyAB
836 simplr φyGyuF-1u=wAB¬FAu¬FBu¬FAu
837 826 836 jca φyGyuF-1u=wAB¬FAu¬FBuFyu¬FAu
838 nelneq Fyu¬FAu¬Fy=FA
839 669 necon3bi ¬Fy=FAyA
840 837 838 839 3syl φyGyuF-1u=wAB¬FAu¬FBuyA
841 simpr φyGyuF-1u=wAB¬FAu¬FBu¬FBu
842 826 841 jca φyGyuF-1u=wAB¬FAu¬FBuFyu¬FBu
843 nelneq Fyu¬FBu¬Fy=FB
844 fveq2 y=BFy=FB
845 844 necon3bi ¬Fy=FByB
846 842 843 845 3syl φyGyuF-1u=wAB¬FAu¬FBuyB
847 613 ad3antrrr φyyAByAyBA*
848 441 ad3antrrr φyyAByAyBB*
849 444 ad4antlr φyyAByAyBy*
850 847 848 849 3jca φyyAByAyBA*B*y*
851 simpr φyyAByAyA
852 5 ad2antrr φyyABA
853 simplr φyyABy
854 262 adantr φyABAB
855 854 385 syl φyAByAByAyyB
856 135 855 mpbid φyAByAyyB
857 856 simp2d φyABAy
858 857 adantlr φyyABAy
859 852 853 858 3jca φyyABAyAy
860 859 adantr φyyAByAAyAy
861 leltne AyAyA<yyA
862 860 861 syl φyyAByAA<yyA
863 851 862 mpbird φyyAByAA<y
864 863 adantr φyyAByAyBA<y
865 necom yBBy
866 865 biimpi yBBy
867 866 adantl φyyAByBBy
868 6 ad2antrr φyyABB
869 856 simp3d φyAByB
870 869 adantlr φyyAByB
871 853 868 870 3jca φyyAByByB
872 871 adantr φyyAByByByB
873 leltne yByBy<BBy
874 872 873 syl φyyAByBy<BBy
875 867 874 mpbird φyyAByBy<B
876 875 adantlr φyyAByAyBy<B
877 864 876 jca φyyAByAyBA<yy<B
878 elioo3g yABA*B*y*A<yy<B
879 850 877 878 sylanbrc φyyAByAyByAB
880 835 840 846 879 syl21anc φyGyuF-1u=wAB¬FAu¬FBuyAB
881 833 880 elind φyGyuF-1u=wAB¬FAu¬FBuywAB
882 881 3adantll2 φyGyuwJF-1u=wAB¬FAu¬FBuywAB
883 165 a1i φF-1u=wABtGwABFunG
884 fvelima FunGtGwABywABGy=t
885 883 884 sylancom φF-1u=wABtGwABywABGy=t
886 simp3 φF-1u=wABywABGy=tGy=t
887 simp1l φF-1u=wABywABGy=tφ
888 inss2 wABAB
889 ioossicc ABAB
890 888 889 sstri wABAB
891 890 sseli ywAByAB
892 891 3ad2ant2 φF-1u=wABywABGy=tyAB
893 887 892 137 syl2anc φF-1u=wABywABGy=tGy=Fy
894 sslin ABABwABwAB
895 889 894 ax-mp wABwAB
896 895 sseli ywABywAB
897 896 adantl F-1u=wABywABywAB
898 195 adantr F-1u=wABywABwAB=F-1u
899 897 898 eleqtrd F-1u=wABywAByF-1u
900 899 adantll φF-1u=wABywAByF-1u
901 20 ad2antrr φF-1u=wABywABFFnAB
902 901 143 syl φF-1u=wABywAByF-1uyABFyu
903 900 902 mpbid φF-1u=wABywAByABFyu
904 903 simprd φF-1u=wABywABFyu
905 904 3adant3 φF-1u=wABywABGy=tFyu
906 893 905 eqeltrd φF-1u=wABywABGy=tGyu
907 886 906 eqeltrrd φF-1u=wABywABGy=ttu
908 907 3exp φF-1u=wABywABGy=ttu
909 908 adantr φF-1u=wABtGwABywABGy=ttu
910 909 rexlimdv φF-1u=wABtGwABywABGy=ttu
911 885 910 mpd φF-1u=wABtGwABtu
912 911 ralrimiva φF-1u=wABtGwABtu
913 dfss3 GwAButGwABtu
914 912 913 sylibr φF-1u=wABGwABu
915 914 ad4ant14 φyGyuF-1u=wABGwABu
916 915 3adant2 φyGyuwJF-1u=wABGwABu
917 916 ad2antrr φyGyuwJF-1u=wAB¬FAu¬FBuGwABu
918 eleq2 v=wAByvywAB
919 imaeq2 v=wABGv=GwAB
920 919 sseq1d v=wABGvuGwABu
921 918 920 anbi12d v=wAByvGvuywABGwABu
922 921 rspcev wABJywABGwABuvJyvGvu
923 812 882 917 922 syl12anc φyGyuwJF-1u=wAB¬FAu¬FBuvJyvGvu
924 806 923 pm2.61dan φyGyuwJF-1u=wAB¬FAuvJyvGvu
925 596 924 pm2.61dan φyGyuwJF-1u=wABvJyvGvu
926 93 925 syld3an1 φyuK𝑡ranFGyuwJF-1u=wABvJyvGvu
927 926 rexlimdv3a φyuK𝑡ranFGyuwJF-1u=wABvJyvGvu
928 88 927 mpd φyuK𝑡ranFGyuvJyvGvu
929 928 ex φyuK𝑡ranFGyuvJyvGvu
930 929 ralrimiva φyuK𝑡ranFGyuvJyvGvu
931 11 a1i φyJTopOn
932 resttopon KTopOnYranFYK𝑡ranFTopOnranF
933 17 71 932 syl2anc φK𝑡ranFTopOnranF
934 933 adantr φyK𝑡ranFTopOnranF
935 iscnp JTopOnK𝑡ranFTopOnranFyGJCnPK𝑡ranFyG:ranFuK𝑡ranFGyuvJyvGvu
936 931 934 466 935 syl3anc φyGJCnPK𝑡ranFyG:ranFuK𝑡ranFGyuvJyvGvu
937 66 930 936 mpbir2and φyGJCnPK𝑡ranFy
938 937 ralrimiva φyGJCnPK𝑡ranFy
939 cncnp JTopOnK𝑡ranFTopOnranFGJCnK𝑡ranFG:ranFyGJCnPK𝑡ranFy
940 11 933 939 sylancr φGJCnK𝑡ranFG:ranFyGJCnPK𝑡ranFy
941 65 938 940 mpbir2and φGJCnK𝑡ranF
942 fnssres GFnABGABFnAB
943 504 12 942 syl2anc φGABFnAB
944 fvres yABGABy=Gy
945 944 adantl φyABGABy=Gy
946 945 137 eqtrd φyABGABy=Fy
947 943 20 946 eqfnfvd φGAB=F
948 941 947 jca φGJCnK𝑡ranFGAB=F