| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem93.1 |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 2 |
|
fourierdlem93.2 |
|- H = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) |
| 3 |
|
fourierdlem93.3 |
|- ( ph -> M e. NN ) |
| 4 |
|
fourierdlem93.4 |
|- ( ph -> Q e. ( P ` M ) ) |
| 5 |
|
fourierdlem93.5 |
|- ( ph -> X e. RR ) |
| 6 |
|
fourierdlem93.6 |
|- ( ph -> F : ( -u _pi [,] _pi ) --> CC ) |
| 7 |
|
fourierdlem93.7 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 8 |
|
fourierdlem93.8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 9 |
|
fourierdlem93.9 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 10 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 12 |
4 11
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 13 |
12
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 14 |
13
|
simplld |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
| 15 |
14
|
eqcomd |
|- ( ph -> -u _pi = ( Q ` 0 ) ) |
| 16 |
13
|
simplrd |
|- ( ph -> ( Q ` M ) = _pi ) |
| 17 |
16
|
eqcomd |
|- ( ph -> _pi = ( Q ` M ) ) |
| 18 |
15 17
|
oveq12d |
|- ( ph -> ( -u _pi [,] _pi ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 19 |
18
|
itgeq1d |
|- ( ph -> S. ( -u _pi [,] _pi ) ( F ` t ) _d t = S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( F ` t ) _d t ) |
| 20 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 22 |
3 21
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 23 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 24 |
23
|
a1i |
|- ( ph -> 1 = ( 0 + 1 ) ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) ) |
| 26 |
22 25
|
eleqtrd |
|- ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 27 |
1 3 4
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 28 |
|
pire |
|- _pi e. RR |
| 29 |
28
|
renegcli |
|- -u _pi e. RR |
| 30 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
| 31 |
29 28 30
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
| 32 |
31
|
a1i |
|- ( ph -> ( -u _pi [,] _pi ) C_ RR ) |
| 33 |
27 32
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 34 |
13
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 35 |
34
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 36 |
6
|
adantr |
|- ( ( ph /\ t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> F : ( -u _pi [,] _pi ) --> CC ) |
| 37 |
|
simpr |
|- ( ( ph /\ t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 38 |
18
|
eqcomd |
|- ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( -u _pi [,] _pi ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( -u _pi [,] _pi ) ) |
| 40 |
37 39
|
eleqtrd |
|- ( ( ph /\ t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> t e. ( -u _pi [,] _pi ) ) |
| 41 |
36 40
|
ffvelcdmd |
|- ( ( ph /\ t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( F ` t ) e. CC ) |
| 42 |
33
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 43 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 44 |
43
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 45 |
42 44
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 46 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 47 |
46
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 48 |
42 47
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 49 |
6
|
feqmptd |
|- ( ph -> F = ( t e. ( -u _pi [,] _pi ) |-> ( F ` t ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F = ( t e. ( -u _pi [,] _pi ) |-> ( F ` t ) ) ) |
| 51 |
50
|
reseq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( t e. ( -u _pi [,] _pi ) |-> ( F ` t ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 52 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 53 |
52
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 54 |
29
|
rexri |
|- -u _pi e. RR* |
| 55 |
54
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> -u _pi e. RR* ) |
| 56 |
28
|
rexri |
|- _pi e. RR* |
| 57 |
56
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> _pi e. RR* ) |
| 58 |
27
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 59 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 60 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 61 |
55 57 58 59 60
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> t e. ( -u _pi [,] _pi ) ) |
| 62 |
61
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) t e. ( -u _pi [,] _pi ) ) |
| 63 |
|
dfss3 |
|- ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) <-> A. t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) t e. ( -u _pi [,] _pi ) ) |
| 64 |
62 63
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 65 |
53 64
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 66 |
65
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( t e. ( -u _pi [,] _pi ) |-> ( F ` t ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) ) |
| 67 |
51 66
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) ) |
| 68 |
67
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 69 |
68 7
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 70 |
67
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 71 |
9 70
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 72 |
67
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) limCC ( Q ` i ) ) ) |
| 73 |
8 72
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) limCC ( Q ` i ) ) ) |
| 74 |
45 48 69 71 73
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) e. L^1 ) |
| 75 |
6
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : ( -u _pi [,] _pi ) --> CC ) |
| 76 |
75 61
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` t ) e. CC ) |
| 77 |
45 48 74 76
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( F ` t ) ) e. L^1 ) |
| 78 |
20 26 33 35 41 77
|
itgspltprt |
|- ( ph -> S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( F ` t ) _d t = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` t ) _d t ) |
| 79 |
|
fvres |
|- ( t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` t ) = ( F ` t ) ) |
| 80 |
79
|
eqcomd |
|- ( t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -> ( F ` t ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` t ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` t ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` t ) ) |
| 82 |
81
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` t ) _d t = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` t ) _d t ) |
| 83 |
|
eqid |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 84 |
6
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : ( -u _pi [,] _pi ) --> CC ) |
| 85 |
84 64
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
| 86 |
53
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 87 |
86 7
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 88 |
86
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 89 |
45 48 35 85
|
limcicciooub |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 90 |
88 89
|
eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 91 |
9 90
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 92 |
86
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 93 |
92
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 94 |
45 48 35 85
|
limciccioolb |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 95 |
93 94
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 96 |
8 95
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 97 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
| 98 |
83 45 48 35 85 87 91 96 97
|
fourierdlem82 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` t ) _d t = S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) _d t ) |
| 99 |
45
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( Q ` i ) e. RR ) |
| 100 |
48
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 101 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> X e. RR ) |
| 102 |
99 101
|
resubcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( ( Q ` i ) - X ) e. RR ) |
| 103 |
100 101
|
resubcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( ( Q ` ( i + 1 ) ) - X ) e. RR ) |
| 104 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 105 |
|
eliccre |
|- ( ( ( ( Q ` i ) - X ) e. RR /\ ( ( Q ` ( i + 1 ) ) - X ) e. RR /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> t e. RR ) |
| 106 |
102 103 104 105
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> t e. RR ) |
| 107 |
101 106
|
readdcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( X + t ) e. RR ) |
| 108 |
|
elicc2 |
|- ( ( ( ( Q ` i ) - X ) e. RR /\ ( ( Q ` ( i + 1 ) ) - X ) e. RR ) -> ( t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) <-> ( t e. RR /\ ( ( Q ` i ) - X ) <_ t /\ t <_ ( ( Q ` ( i + 1 ) ) - X ) ) ) ) |
| 109 |
102 103 108
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) <-> ( t e. RR /\ ( ( Q ` i ) - X ) <_ t /\ t <_ ( ( Q ` ( i + 1 ) ) - X ) ) ) ) |
| 110 |
104 109
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( t e. RR /\ ( ( Q ` i ) - X ) <_ t /\ t <_ ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 111 |
110
|
simp2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( ( Q ` i ) - X ) <_ t ) |
| 112 |
99 101 106
|
lesubadd2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( ( ( Q ` i ) - X ) <_ t <-> ( Q ` i ) <_ ( X + t ) ) ) |
| 113 |
111 112
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( Q ` i ) <_ ( X + t ) ) |
| 114 |
110
|
simp3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> t <_ ( ( Q ` ( i + 1 ) ) - X ) ) |
| 115 |
101 106 100
|
leaddsub2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( ( X + t ) <_ ( Q ` ( i + 1 ) ) <-> t <_ ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 116 |
114 115
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( X + t ) <_ ( Q ` ( i + 1 ) ) ) |
| 117 |
99 100 107 113 116
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( X + t ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 118 |
|
fvres |
|- ( ( X + t ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) = ( F ` ( X + t ) ) ) |
| 119 |
117 118
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) = ( F ` ( X + t ) ) ) |
| 120 |
119
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) _d t = S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 121 |
82 98 120
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` t ) _d t = S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 122 |
121
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` t ) _d t = sum_ i e. ( 0 ..^ M ) S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 123 |
|
oveq2 |
|- ( s = t -> ( X + s ) = ( X + t ) ) |
| 124 |
123
|
fveq2d |
|- ( s = t -> ( F ` ( X + s ) ) = ( F ` ( X + t ) ) ) |
| 125 |
124
|
cbvitgv |
|- S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + s ) ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + t ) ) _d t |
| 126 |
125
|
a1i |
|- ( ph -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + s ) ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + t ) ) _d t ) |
| 127 |
2
|
a1i |
|- ( ph -> H = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) ) |
| 128 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
| 129 |
128
|
oveq1d |
|- ( i = 0 -> ( ( Q ` i ) - X ) = ( ( Q ` 0 ) - X ) ) |
| 130 |
129
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) - X ) = ( ( Q ` 0 ) - X ) ) |
| 131 |
3
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 132 |
|
0le0 |
|- 0 <_ 0 |
| 133 |
132
|
a1i |
|- ( ph -> 0 <_ 0 ) |
| 134 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 135 |
3
|
nnred |
|- ( ph -> M e. RR ) |
| 136 |
3
|
nngt0d |
|- ( ph -> 0 < M ) |
| 137 |
134 135 136
|
ltled |
|- ( ph -> 0 <_ M ) |
| 138 |
20 131 20 133 137
|
elfzd |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 139 |
14 29
|
eqeltrdi |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 140 |
139 5
|
resubcld |
|- ( ph -> ( ( Q ` 0 ) - X ) e. RR ) |
| 141 |
127 130 138 140
|
fvmptd |
|- ( ph -> ( H ` 0 ) = ( ( Q ` 0 ) - X ) ) |
| 142 |
14
|
oveq1d |
|- ( ph -> ( ( Q ` 0 ) - X ) = ( -u _pi - X ) ) |
| 143 |
141 142
|
eqtr2d |
|- ( ph -> ( -u _pi - X ) = ( H ` 0 ) ) |
| 144 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
| 145 |
144
|
oveq1d |
|- ( i = M -> ( ( Q ` i ) - X ) = ( ( Q ` M ) - X ) ) |
| 146 |
145
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( Q ` i ) - X ) = ( ( Q ` M ) - X ) ) |
| 147 |
135
|
leidd |
|- ( ph -> M <_ M ) |
| 148 |
20 131 131 137 147
|
elfzd |
|- ( ph -> M e. ( 0 ... M ) ) |
| 149 |
16 28
|
eqeltrdi |
|- ( ph -> ( Q ` M ) e. RR ) |
| 150 |
149 5
|
resubcld |
|- ( ph -> ( ( Q ` M ) - X ) e. RR ) |
| 151 |
127 146 148 150
|
fvmptd |
|- ( ph -> ( H ` M ) = ( ( Q ` M ) - X ) ) |
| 152 |
16
|
oveq1d |
|- ( ph -> ( ( Q ` M ) - X ) = ( _pi - X ) ) |
| 153 |
151 152
|
eqtr2d |
|- ( ph -> ( _pi - X ) = ( H ` M ) ) |
| 154 |
143 153
|
oveq12d |
|- ( ph -> ( ( -u _pi - X ) [,] ( _pi - X ) ) = ( ( H ` 0 ) [,] ( H ` M ) ) ) |
| 155 |
154
|
itgeq1d |
|- ( ph -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + t ) ) _d t = S. ( ( H ` 0 ) [,] ( H ` M ) ) ( F ` ( X + t ) ) _d t ) |
| 156 |
33
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 157 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) |
| 158 |
156 157
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) - X ) e. RR ) |
| 159 |
158 2
|
fmptd |
|- ( ph -> H : ( 0 ... M ) --> RR ) |
| 160 |
45 48 97 35
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - X ) < ( ( Q ` ( i + 1 ) ) - X ) ) |
| 161 |
44 158
|
syldan |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - X ) e. RR ) |
| 162 |
2
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) - X ) e. RR ) -> ( H ` i ) = ( ( Q ` i ) - X ) ) |
| 163 |
44 161 162
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` i ) = ( ( Q ` i ) - X ) ) |
| 164 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
| 165 |
164
|
oveq1d |
|- ( i = j -> ( ( Q ` i ) - X ) = ( ( Q ` j ) - X ) ) |
| 166 |
165
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) |
| 167 |
2 166
|
eqtri |
|- H = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) |
| 168 |
167
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> H = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) ) |
| 169 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) |
| 170 |
169
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( Q ` j ) - X ) = ( ( Q ` ( i + 1 ) ) - X ) ) |
| 171 |
170
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) - X ) = ( ( Q ` ( i + 1 ) ) - X ) ) |
| 172 |
48 97
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - X ) e. RR ) |
| 173 |
168 171 47 172
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) - X ) ) |
| 174 |
160 163 173
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` i ) < ( H ` ( i + 1 ) ) ) |
| 175 |
|
frn |
|- ( F : ( -u _pi [,] _pi ) --> CC -> ran F C_ CC ) |
| 176 |
6 175
|
syl |
|- ( ph -> ran F C_ CC ) |
| 177 |
176
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ran F C_ CC ) |
| 178 |
|
ffun |
|- ( F : ( -u _pi [,] _pi ) --> CC -> Fun F ) |
| 179 |
6 178
|
syl |
|- ( ph -> Fun F ) |
| 180 |
179
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> Fun F ) |
| 181 |
29
|
a1i |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> -u _pi e. RR ) |
| 182 |
28
|
a1i |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> _pi e. RR ) |
| 183 |
5
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> X e. RR ) |
| 184 |
141 140
|
eqeltrd |
|- ( ph -> ( H ` 0 ) e. RR ) |
| 185 |
184
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( H ` 0 ) e. RR ) |
| 186 |
151 150
|
eqeltrd |
|- ( ph -> ( H ` M ) e. RR ) |
| 187 |
186
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( H ` M ) e. RR ) |
| 188 |
|
simpr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) |
| 189 |
|
eliccre |
|- ( ( ( H ` 0 ) e. RR /\ ( H ` M ) e. RR /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> t e. RR ) |
| 190 |
185 187 188 189
|
syl3anc |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> t e. RR ) |
| 191 |
183 190
|
readdcld |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( X + t ) e. RR ) |
| 192 |
128
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( Q ` i ) = ( Q ` 0 ) ) |
| 193 |
192
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) - X ) = ( ( Q ` 0 ) - X ) ) |
| 194 |
127 193 138 140
|
fvmptd |
|- ( ph -> ( H ` 0 ) = ( ( Q ` 0 ) - X ) ) |
| 195 |
194
|
oveq2d |
|- ( ph -> ( X + ( H ` 0 ) ) = ( X + ( ( Q ` 0 ) - X ) ) ) |
| 196 |
5
|
recnd |
|- ( ph -> X e. CC ) |
| 197 |
139
|
recnd |
|- ( ph -> ( Q ` 0 ) e. CC ) |
| 198 |
196 197
|
pncan3d |
|- ( ph -> ( X + ( ( Q ` 0 ) - X ) ) = ( Q ` 0 ) ) |
| 199 |
195 198 14
|
3eqtrrd |
|- ( ph -> -u _pi = ( X + ( H ` 0 ) ) ) |
| 200 |
199
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> -u _pi = ( X + ( H ` 0 ) ) ) |
| 201 |
|
elicc2 |
|- ( ( ( H ` 0 ) e. RR /\ ( H ` M ) e. RR ) -> ( t e. ( ( H ` 0 ) [,] ( H ` M ) ) <-> ( t e. RR /\ ( H ` 0 ) <_ t /\ t <_ ( H ` M ) ) ) ) |
| 202 |
185 187 201
|
syl2anc |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( t e. ( ( H ` 0 ) [,] ( H ` M ) ) <-> ( t e. RR /\ ( H ` 0 ) <_ t /\ t <_ ( H ` M ) ) ) ) |
| 203 |
188 202
|
mpbid |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( t e. RR /\ ( H ` 0 ) <_ t /\ t <_ ( H ` M ) ) ) |
| 204 |
203
|
simp2d |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( H ` 0 ) <_ t ) |
| 205 |
185 190 183 204
|
leadd2dd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( X + ( H ` 0 ) ) <_ ( X + t ) ) |
| 206 |
200 205
|
eqbrtrd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> -u _pi <_ ( X + t ) ) |
| 207 |
203
|
simp3d |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> t <_ ( H ` M ) ) |
| 208 |
190 187 183 207
|
leadd2dd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( X + t ) <_ ( X + ( H ` M ) ) ) |
| 209 |
151
|
oveq2d |
|- ( ph -> ( X + ( H ` M ) ) = ( X + ( ( Q ` M ) - X ) ) ) |
| 210 |
149
|
recnd |
|- ( ph -> ( Q ` M ) e. CC ) |
| 211 |
196 210
|
pncan3d |
|- ( ph -> ( X + ( ( Q ` M ) - X ) ) = ( Q ` M ) ) |
| 212 |
209 211 16
|
3eqtrrd |
|- ( ph -> _pi = ( X + ( H ` M ) ) ) |
| 213 |
212
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> _pi = ( X + ( H ` M ) ) ) |
| 214 |
208 213
|
breqtrrd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( X + t ) <_ _pi ) |
| 215 |
181 182 191 206 214
|
eliccd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( X + t ) e. ( -u _pi [,] _pi ) ) |
| 216 |
|
fdm |
|- ( F : ( -u _pi [,] _pi ) --> CC -> dom F = ( -u _pi [,] _pi ) ) |
| 217 |
6 216
|
syl |
|- ( ph -> dom F = ( -u _pi [,] _pi ) ) |
| 218 |
217
|
eqcomd |
|- ( ph -> ( -u _pi [,] _pi ) = dom F ) |
| 219 |
218
|
adantr |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( -u _pi [,] _pi ) = dom F ) |
| 220 |
215 219
|
eleqtrd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( X + t ) e. dom F ) |
| 221 |
|
fvelrn |
|- ( ( Fun F /\ ( X + t ) e. dom F ) -> ( F ` ( X + t ) ) e. ran F ) |
| 222 |
180 220 221
|
syl2anc |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( F ` ( X + t ) ) e. ran F ) |
| 223 |
177 222
|
sseldd |
|- ( ( ph /\ t e. ( ( H ` 0 ) [,] ( H ` M ) ) ) -> ( F ` ( X + t ) ) e. CC ) |
| 224 |
163 161
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` i ) e. RR ) |
| 225 |
173 172
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` ( i + 1 ) ) e. RR ) |
| 226 |
84 65
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 227 |
45
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 228 |
227
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 229 |
48
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 230 |
229
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 231 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> X e. RR ) |
| 232 |
|
elioore |
|- ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> t e. RR ) |
| 233 |
232
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> t e. RR ) |
| 234 |
231 233
|
readdcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( X + t ) e. RR ) |
| 235 |
163
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( H ` i ) ) = ( X + ( ( Q ` i ) - X ) ) ) |
| 236 |
196
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) |
| 237 |
45
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
| 238 |
236 237
|
pncan3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( ( Q ` i ) - X ) ) = ( Q ` i ) ) |
| 239 |
|
eqidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( Q ` i ) ) |
| 240 |
235 238 239
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( X + ( H ` i ) ) ) |
| 241 |
240
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( X + ( H ` i ) ) ) |
| 242 |
224
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( H ` i ) e. RR ) |
| 243 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) |
| 244 |
242
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( H ` i ) e. RR* ) |
| 245 |
225
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` ( i + 1 ) ) e. RR* ) |
| 246 |
245
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( H ` ( i + 1 ) ) e. RR* ) |
| 247 |
|
elioo2 |
|- ( ( ( H ` i ) e. RR* /\ ( H ` ( i + 1 ) ) e. RR* ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) <-> ( t e. RR /\ ( H ` i ) < t /\ t < ( H ` ( i + 1 ) ) ) ) ) |
| 248 |
244 246 247
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) <-> ( t e. RR /\ ( H ` i ) < t /\ t < ( H ` ( i + 1 ) ) ) ) ) |
| 249 |
243 248
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( t e. RR /\ ( H ` i ) < t /\ t < ( H ` ( i + 1 ) ) ) ) |
| 250 |
249
|
simp2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( H ` i ) < t ) |
| 251 |
242 233 231 250
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( X + ( H ` i ) ) < ( X + t ) ) |
| 252 |
241 251
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + t ) ) |
| 253 |
225
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( H ` ( i + 1 ) ) e. RR ) |
| 254 |
249
|
simp3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> t < ( H ` ( i + 1 ) ) ) |
| 255 |
233 253 231 254
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( X + t ) < ( X + ( H ` ( i + 1 ) ) ) ) |
| 256 |
173
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( H ` ( i + 1 ) ) ) = ( X + ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 257 |
48
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 258 |
236 257
|
pncan3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( ( Q ` ( i + 1 ) ) - X ) ) = ( Q ` ( i + 1 ) ) ) |
| 259 |
256 258
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( H ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) |
| 260 |
259
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( X + ( H ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) |
| 261 |
255 260
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( X + t ) < ( Q ` ( i + 1 ) ) ) |
| 262 |
228 230 234 252 261
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( X + t ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 263 |
|
eqid |
|- ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) |
| 264 |
262 263
|
fmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) : ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) --> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 265 |
|
fcompt |
|- ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) : ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) --> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) = ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) ) |
| 266 |
226 264 265
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) = ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) ) |
| 267 |
|
oveq2 |
|- ( t = r -> ( X + t ) = ( X + r ) ) |
| 268 |
267
|
cbvmptv |
|- ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) = ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) |
| 269 |
268
|
fveq1i |
|- ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) = ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) |
| 270 |
269
|
fveq2i |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) ) |
| 271 |
270
|
mpteq2i |
|- ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) ) ) |
| 272 |
271
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) ) ) ) |
| 273 |
|
fveq2 |
|- ( s = t -> ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) = ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) |
| 274 |
273
|
fveq2d |
|- ( s = t -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) ) |
| 275 |
274
|
cbvmptv |
|- ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) ) |
| 276 |
275
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` s ) ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) ) ) |
| 277 |
|
eqidd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) = ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ) |
| 278 |
|
oveq2 |
|- ( r = t -> ( X + r ) = ( X + t ) ) |
| 279 |
278
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) /\ r = t ) -> ( X + r ) = ( X + t ) ) |
| 280 |
277 279 243 234
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) = ( X + t ) ) |
| 281 |
280
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) ) |
| 282 |
|
fvres |
|- ( ( X + t ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) = ( F ` ( X + t ) ) ) |
| 283 |
262 282
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + t ) ) = ( F ` ( X + t ) ) ) |
| 284 |
281 283
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) = ( F ` ( X + t ) ) ) |
| 285 |
284
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( r e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + r ) ) ` t ) ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) ) |
| 286 |
272 276 285
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) ) |
| 287 |
266 286
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) ) |
| 288 |
|
eqid |
|- ( t e. CC |-> ( X + t ) ) = ( t e. CC |-> ( X + t ) ) |
| 289 |
|
ssid |
|- CC C_ CC |
| 290 |
289
|
a1i |
|- ( X e. CC -> CC C_ CC ) |
| 291 |
|
id |
|- ( X e. CC -> X e. CC ) |
| 292 |
290 291 290
|
constcncfg |
|- ( X e. CC -> ( t e. CC |-> X ) e. ( CC -cn-> CC ) ) |
| 293 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) ) |
| 294 |
289 289 293
|
mp2an |
|- ( t e. CC |-> t ) e. ( CC -cn-> CC ) |
| 295 |
294
|
a1i |
|- ( X e. CC -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) ) |
| 296 |
292 295
|
addcncf |
|- ( X e. CC -> ( t e. CC |-> ( X + t ) ) e. ( CC -cn-> CC ) ) |
| 297 |
236 296
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. CC |-> ( X + t ) ) e. ( CC -cn-> CC ) ) |
| 298 |
|
ioosscn |
|- ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) C_ CC |
| 299 |
298
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) C_ CC ) |
| 300 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
| 301 |
300
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 302 |
288 297 299 301 262
|
cncfmptssg |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -cn-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 303 |
302 7
|
cncfco |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 304 |
287 303
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 305 |
227
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( Q ` i ) e. RR* ) |
| 306 |
229
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 307 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) |
| 308 |
|
vex |
|- r e. _V |
| 309 |
263
|
elrnmpt |
|- ( r e. _V -> ( r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) <-> E. t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) r = ( X + t ) ) ) |
| 310 |
308 309
|
ax-mp |
|- ( r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) <-> E. t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) r = ( X + t ) ) |
| 311 |
307 310
|
sylib |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> E. t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) r = ( X + t ) ) |
| 312 |
|
nfv |
|- F/ t ( ph /\ i e. ( 0 ..^ M ) ) |
| 313 |
|
nfmpt1 |
|- F/_ t ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) |
| 314 |
313
|
nfrn |
|- F/_ t ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) |
| 315 |
314
|
nfcri |
|- F/ t r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) |
| 316 |
312 315
|
nfan |
|- F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) |
| 317 |
|
nfv |
|- F/ t r e. RR |
| 318 |
|
simp3 |
|- ( ( ph /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> r = ( X + t ) ) |
| 319 |
5
|
3ad2ant1 |
|- ( ( ph /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> X e. RR ) |
| 320 |
232
|
3ad2ant2 |
|- ( ( ph /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> t e. RR ) |
| 321 |
319 320
|
readdcld |
|- ( ( ph /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> ( X + t ) e. RR ) |
| 322 |
318 321
|
eqeltrd |
|- ( ( ph /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> r e. RR ) |
| 323 |
322
|
3exp |
|- ( ph -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> ( r = ( X + t ) -> r e. RR ) ) ) |
| 324 |
323
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> ( r = ( X + t ) -> r e. RR ) ) ) |
| 325 |
316 317 324
|
rexlimd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( E. t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) r = ( X + t ) -> r e. RR ) ) |
| 326 |
311 325
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r e. RR ) |
| 327 |
|
nfv |
|- F/ t ( Q ` i ) < r |
| 328 |
252
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> ( Q ` i ) < ( X + t ) ) |
| 329 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> r = ( X + t ) ) |
| 330 |
328 329
|
breqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> ( Q ` i ) < r ) |
| 331 |
330
|
3exp |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> ( r = ( X + t ) -> ( Q ` i ) < r ) ) ) |
| 332 |
331
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> ( r = ( X + t ) -> ( Q ` i ) < r ) ) ) |
| 333 |
316 327 332
|
rexlimd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( E. t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) r = ( X + t ) -> ( Q ` i ) < r ) ) |
| 334 |
311 333
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( Q ` i ) < r ) |
| 335 |
|
nfv |
|- F/ t r < ( Q ` ( i + 1 ) ) |
| 336 |
261
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> ( X + t ) < ( Q ` ( i + 1 ) ) ) |
| 337 |
329 336
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) /\ r = ( X + t ) ) -> r < ( Q ` ( i + 1 ) ) ) |
| 338 |
337
|
3exp |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> ( r = ( X + t ) -> r < ( Q ` ( i + 1 ) ) ) ) ) |
| 339 |
338
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> ( r = ( X + t ) -> r < ( Q ` ( i + 1 ) ) ) ) ) |
| 340 |
316 335 339
|
rexlimd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( E. t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) r = ( X + t ) -> r < ( Q ` ( i + 1 ) ) ) ) |
| 341 |
311 340
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r < ( Q ` ( i + 1 ) ) ) |
| 342 |
305 306 326 334 341
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 343 |
217
|
ineq2d |
|- ( ph -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i dom F ) = ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i ( -u _pi [,] _pi ) ) ) |
| 344 |
343
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i dom F ) = ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i ( -u _pi [,] _pi ) ) ) |
| 345 |
|
dmres |
|- dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i dom F ) |
| 346 |
345
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i dom F ) ) |
| 347 |
|
dfss |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) <-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i ( -u _pi [,] _pi ) ) ) |
| 348 |
65 347
|
sylib |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) i^i ( -u _pi [,] _pi ) ) ) |
| 349 |
344 346 348
|
3eqtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 350 |
349
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 351 |
342 350
|
eleqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 352 |
326 341
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r =/= ( Q ` ( i + 1 ) ) ) |
| 353 |
352
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> -. r = ( Q ` ( i + 1 ) ) ) |
| 354 |
|
velsn |
|- ( r e. { ( Q ` ( i + 1 ) ) } <-> r = ( Q ` ( i + 1 ) ) ) |
| 355 |
353 354
|
sylnibr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> -. r e. { ( Q ` ( i + 1 ) ) } ) |
| 356 |
351 355
|
eldifd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
| 357 |
356
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) r e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
| 358 |
|
dfss3 |
|- ( ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) <-> A. r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) r e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
| 359 |
357 358
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
| 360 |
|
eqid |
|- ( s e. CC |-> ( X + s ) ) = ( s e. CC |-> ( X + s ) ) |
| 361 |
196
|
adantr |
|- ( ( ph /\ s e. CC ) -> X e. CC ) |
| 362 |
|
simpr |
|- ( ( ph /\ s e. CC ) -> s e. CC ) |
| 363 |
361 362
|
addcomd |
|- ( ( ph /\ s e. CC ) -> ( X + s ) = ( s + X ) ) |
| 364 |
363
|
mpteq2dva |
|- ( ph -> ( s e. CC |-> ( X + s ) ) = ( s e. CC |-> ( s + X ) ) ) |
| 365 |
|
eqid |
|- ( s e. CC |-> ( s + X ) ) = ( s e. CC |-> ( s + X ) ) |
| 366 |
365
|
addccncf |
|- ( X e. CC -> ( s e. CC |-> ( s + X ) ) e. ( CC -cn-> CC ) ) |
| 367 |
196 366
|
syl |
|- ( ph -> ( s e. CC |-> ( s + X ) ) e. ( CC -cn-> CC ) ) |
| 368 |
364 367
|
eqeltrd |
|- ( ph -> ( s e. CC |-> ( X + s ) ) e. ( CC -cn-> CC ) ) |
| 369 |
368
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. CC |-> ( X + s ) ) e. ( CC -cn-> CC ) ) |
| 370 |
224
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` i ) e. RR* ) |
| 371 |
|
iocssre |
|- ( ( ( H ` i ) e. RR* /\ ( H ` ( i + 1 ) ) e. RR ) -> ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) C_ RR ) |
| 372 |
370 225 371
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) C_ RR ) |
| 373 |
|
ax-resscn |
|- RR C_ CC |
| 374 |
372 373
|
sstrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) C_ CC ) |
| 375 |
289
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> CC C_ CC ) |
| 376 |
196
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) -> X e. CC ) |
| 377 |
374
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) -> s e. CC ) |
| 378 |
376 377
|
addcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) -> ( X + s ) e. CC ) |
| 379 |
360 369 374 375 378
|
cncfmptssg |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 380 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 381 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) = ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) |
| 382 |
380
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 383 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 384 |
383
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 385 |
382 384
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 386 |
385
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 387 |
380 381 386
|
cncfcn |
|- ( ( ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) C_ CC /\ CC C_ CC ) -> ( ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 388 |
374 375 387
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 389 |
379 388
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 390 |
380
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 391 |
390
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 392 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) e. ( TopOn ` ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) ) |
| 393 |
391 374 392
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) e. ( TopOn ` ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) ) |
| 394 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) e. ( TopOn ` ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) : ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) --> CC /\ A. t e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) ) ) |
| 395 |
393 391 394
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) : ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) --> CC /\ A. t e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) ) ) |
| 396 |
389 395
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) : ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) --> CC /\ A. t e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) ) |
| 397 |
396
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. t e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) |
| 398 |
|
ubioc1 |
|- ( ( ( H ` i ) e. RR* /\ ( H ` ( i + 1 ) ) e. RR* /\ ( H ` i ) < ( H ` ( i + 1 ) ) ) -> ( H ` ( i + 1 ) ) e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) |
| 399 |
370 245 174 398
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` ( i + 1 ) ) e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) |
| 400 |
|
fveq2 |
|- ( t = ( H ` ( i + 1 ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) = ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) |
| 401 |
400
|
eleq2d |
|- ( t = ( H ` ( i + 1 ) ) -> ( ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) <-> ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) ) |
| 402 |
401
|
rspccva |
|- ( ( A. t e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) /\ ( H ` ( i + 1 ) ) e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) -> ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) |
| 403 |
397 399 402
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) |
| 404 |
|
ioounsn |
|- ( ( ( H ` i ) e. RR* /\ ( H ` ( i + 1 ) ) e. RR* /\ ( H ` i ) < ( H ` ( i + 1 ) ) ) -> ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) = ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) |
| 405 |
370 245 174 404
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) = ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) |
| 406 |
259
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( X + ( H ` ( i + 1 ) ) ) ) |
| 407 |
406
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ s = ( H ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) = ( X + ( H ` ( i + 1 ) ) ) ) |
| 408 |
|
iftrue |
|- ( s = ( H ` ( i + 1 ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( Q ` ( i + 1 ) ) ) |
| 409 |
408
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ s = ( H ` ( i + 1 ) ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( Q ` ( i + 1 ) ) ) |
| 410 |
|
oveq2 |
|- ( s = ( H ` ( i + 1 ) ) -> ( X + s ) = ( X + ( H ` ( i + 1 ) ) ) ) |
| 411 |
410
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ s = ( H ` ( i + 1 ) ) ) -> ( X + s ) = ( X + ( H ` ( i + 1 ) ) ) ) |
| 412 |
407 409 411
|
3eqtr4d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ s = ( H ` ( i + 1 ) ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 413 |
|
iffalse |
|- ( -. s = ( H ` ( i + 1 ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) |
| 414 |
413
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) |
| 415 |
|
eqidd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) |
| 416 |
|
oveq2 |
|- ( t = s -> ( X + t ) = ( X + s ) ) |
| 417 |
416
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) /\ t = s ) -> ( X + t ) = ( X + s ) ) |
| 418 |
|
velsn |
|- ( s e. { ( H ` ( i + 1 ) ) } <-> s = ( H ` ( i + 1 ) ) ) |
| 419 |
418
|
notbii |
|- ( -. s e. { ( H ` ( i + 1 ) ) } <-> -. s = ( H ` ( i + 1 ) ) ) |
| 420 |
|
elun |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) <-> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) \/ s e. { ( H ` ( i + 1 ) ) } ) ) |
| 421 |
420
|
biimpi |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) -> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) \/ s e. { ( H ` ( i + 1 ) ) } ) ) |
| 422 |
421
|
orcomd |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) -> ( s e. { ( H ` ( i + 1 ) ) } \/ s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) ) |
| 423 |
422
|
ord |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) -> ( -. s e. { ( H ` ( i + 1 ) ) } -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) ) |
| 424 |
419 423
|
biimtrrid |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) -> ( -. s = ( H ` ( i + 1 ) ) -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) ) |
| 425 |
424
|
imp |
|- ( ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) /\ -. s = ( H ` ( i + 1 ) ) ) -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) |
| 426 |
425
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) |
| 427 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) -> X e. RR ) |
| 428 |
|
elioore |
|- ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) -> s e. RR ) |
| 429 |
428
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) -> s e. RR ) |
| 430 |
|
elsni |
|- ( s e. { ( H ` ( i + 1 ) ) } -> s = ( H ` ( i + 1 ) ) ) |
| 431 |
430
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. { ( H ` ( i + 1 ) ) } ) -> s = ( H ` ( i + 1 ) ) ) |
| 432 |
225
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. { ( H ` ( i + 1 ) ) } ) -> ( H ` ( i + 1 ) ) e. RR ) |
| 433 |
431 432
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. { ( H ` ( i + 1 ) ) } ) -> s e. RR ) |
| 434 |
429 433
|
jaodan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) \/ s e. { ( H ` ( i + 1 ) ) } ) ) -> s e. RR ) |
| 435 |
420 434
|
sylan2b |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) -> s e. RR ) |
| 436 |
427 435
|
readdcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) -> ( X + s ) e. RR ) |
| 437 |
436
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) -> ( X + s ) e. RR ) |
| 438 |
415 417 426 437
|
fvmptd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) -> ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) = ( X + s ) ) |
| 439 |
414 438
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) /\ -. s = ( H ` ( i + 1 ) ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 440 |
412 439
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) -> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 441 |
405 440
|
mpteq12dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) |-> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( s e. ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) ) |
| 442 |
405
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) ) |
| 443 |
442
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ) |
| 444 |
443
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) (,] ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) |
| 445 |
403 441 444
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) |-> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) |
| 446 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) |
| 447 |
|
eqid |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) |-> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) |-> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) |
| 448 |
264 301
|
fssd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) : ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) --> CC ) |
| 449 |
225
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` ( i + 1 ) ) e. CC ) |
| 450 |
446 380 447 448 299 449
|
ellimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) e. ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) limCC ( H ` ( i + 1 ) ) ) <-> ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) |-> if ( s = ( H ` ( i + 1 ) ) , ( Q ` ( i + 1 ) ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` ( i + 1 ) ) } ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` ( i + 1 ) ) ) ) ) |
| 451 |
445 450
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) limCC ( H ` ( i + 1 ) ) ) ) |
| 452 |
359 451 9
|
limccog |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) limCC ( H ` ( i + 1 ) ) ) ) |
| 453 |
266 286
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) ) |
| 454 |
453
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) limCC ( H ` ( i + 1 ) ) ) = ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) limCC ( H ` ( i + 1 ) ) ) ) |
| 455 |
452 454
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) limCC ( H ` ( i + 1 ) ) ) ) |
| 456 |
45
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> ( Q ` i ) e. RR ) |
| 457 |
456 334
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r =/= ( Q ` i ) ) |
| 458 |
457
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> -. r = ( Q ` i ) ) |
| 459 |
|
velsn |
|- ( r e. { ( Q ` i ) } <-> r = ( Q ` i ) ) |
| 460 |
458 459
|
sylnibr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> -. r e. { ( Q ` i ) } ) |
| 461 |
351 460
|
eldifd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) -> r e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
| 462 |
461
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) r e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
| 463 |
|
dfss3 |
|- ( ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) <-> A. r e. ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) r e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
| 464 |
462 463
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
| 465 |
|
icossre |
|- ( ( ( H ` i ) e. RR /\ ( H ` ( i + 1 ) ) e. RR* ) -> ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) C_ RR ) |
| 466 |
224 245 465
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) C_ RR ) |
| 467 |
466 373
|
sstrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) C_ CC ) |
| 468 |
196
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) -> X e. CC ) |
| 469 |
467
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) -> s e. CC ) |
| 470 |
468 469
|
addcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) -> ( X + s ) e. CC ) |
| 471 |
360 369 467 375 470
|
cncfmptssg |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 472 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) = ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) |
| 473 |
380 472 386
|
cncfcn |
|- ( ( ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) C_ CC /\ CC C_ CC ) -> ( ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 474 |
467 375 473
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 475 |
471 474
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 476 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) e. ( TopOn ` ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) ) |
| 477 |
391 467 476
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) e. ( TopOn ` ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) ) |
| 478 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) e. ( TopOn ` ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) : ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) --> CC /\ A. t e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) ) ) |
| 479 |
477 391 478
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) : ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) --> CC /\ A. t e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) ) ) |
| 480 |
475 479
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) : ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) --> CC /\ A. t e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) ) |
| 481 |
480
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. t e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) ) |
| 482 |
|
lbico1 |
|- ( ( ( H ` i ) e. RR* /\ ( H ` ( i + 1 ) ) e. RR* /\ ( H ` i ) < ( H ` ( i + 1 ) ) ) -> ( H ` i ) e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) |
| 483 |
370 245 174 482
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` i ) e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) |
| 484 |
|
fveq2 |
|- ( t = ( H ` i ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) = ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) |
| 485 |
484
|
eleq2d |
|- ( t = ( H ` i ) -> ( ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) <-> ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) ) |
| 486 |
485
|
rspccva |
|- ( ( A. t e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` t ) /\ ( H ` i ) e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) -> ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) |
| 487 |
481 483 486
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) |
| 488 |
|
uncom |
|- ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) = ( { ( H ` i ) } u. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) |
| 489 |
|
snunioo |
|- ( ( ( H ` i ) e. RR* /\ ( H ` ( i + 1 ) ) e. RR* /\ ( H ` i ) < ( H ` ( i + 1 ) ) ) -> ( { ( H ` i ) } u. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) = ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) |
| 490 |
370 245 174 489
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( { ( H ` i ) } u. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) = ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) |
| 491 |
488 490
|
eqtrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) = ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) |
| 492 |
|
iftrue |
|- ( s = ( H ` i ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( Q ` i ) ) |
| 493 |
492
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s = ( H ` i ) ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( Q ` i ) ) |
| 494 |
240
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s = ( H ` i ) ) -> ( Q ` i ) = ( X + ( H ` i ) ) ) |
| 495 |
|
oveq2 |
|- ( s = ( H ` i ) -> ( X + s ) = ( X + ( H ` i ) ) ) |
| 496 |
495
|
eqcomd |
|- ( s = ( H ` i ) -> ( X + ( H ` i ) ) = ( X + s ) ) |
| 497 |
496
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s = ( H ` i ) ) -> ( X + ( H ` i ) ) = ( X + s ) ) |
| 498 |
493 494 497
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s = ( H ` i ) ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 499 |
498
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ s = ( H ` i ) ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 500 |
|
iffalse |
|- ( -. s = ( H ` i ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) |
| 501 |
500
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) |
| 502 |
|
eqidd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) = ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) |
| 503 |
416
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) /\ t = s ) -> ( X + t ) = ( X + s ) ) |
| 504 |
|
velsn |
|- ( s e. { ( H ` i ) } <-> s = ( H ` i ) ) |
| 505 |
504
|
notbii |
|- ( -. s e. { ( H ` i ) } <-> -. s = ( H ` i ) ) |
| 506 |
|
elun |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) <-> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) \/ s e. { ( H ` i ) } ) ) |
| 507 |
506
|
biimpi |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) -> ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) \/ s e. { ( H ` i ) } ) ) |
| 508 |
507
|
orcomd |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) -> ( s e. { ( H ` i ) } \/ s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) ) |
| 509 |
508
|
ord |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) -> ( -. s e. { ( H ` i ) } -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) ) |
| 510 |
505 509
|
biimtrrid |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) -> ( -. s = ( H ` i ) -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) ) |
| 511 |
510
|
imp |
|- ( ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) /\ -. s = ( H ` i ) ) -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) |
| 512 |
511
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) -> s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) ) |
| 513 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) -> X e. RR ) |
| 514 |
|
elsni |
|- ( s e. { ( H ` i ) } -> s = ( H ` i ) ) |
| 515 |
514
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. { ( H ` i ) } ) -> s = ( H ` i ) ) |
| 516 |
224
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. { ( H ` i ) } ) -> ( H ` i ) e. RR ) |
| 517 |
515 516
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. { ( H ` i ) } ) -> s e. RR ) |
| 518 |
429 517
|
jaodan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( s e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) \/ s e. { ( H ` i ) } ) ) -> s e. RR ) |
| 519 |
506 518
|
sylan2b |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) -> s e. RR ) |
| 520 |
513 519
|
readdcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) -> ( X + s ) e. RR ) |
| 521 |
520
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) -> ( X + s ) e. RR ) |
| 522 |
502 503 512 521
|
fvmptd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) -> ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) = ( X + s ) ) |
| 523 |
501 522
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) /\ -. s = ( H ` i ) ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 524 |
499 523
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) -> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) = ( X + s ) ) |
| 525 |
491 524
|
mpteq12dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) |-> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( s e. ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) |-> ( X + s ) ) ) |
| 526 |
491
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) ) |
| 527 |
526
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ) |
| 528 |
527
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( ( H ` i ) [,) ( H ` ( i + 1 ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) |
| 529 |
487 525 528
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) |-> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) |
| 530 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) |
| 531 |
|
eqid |
|- ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) |-> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) = ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) |-> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) |
| 532 |
224
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H ` i ) e. CC ) |
| 533 |
530 380 531 448 299 532
|
ellimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) e. ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) limCC ( H ` i ) ) <-> ( s e. ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) |-> if ( s = ( H ` i ) , ( Q ` i ) , ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ` s ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) u. { ( H ` i ) } ) ) CnP ( TopOpen ` CCfld ) ) ` ( H ` i ) ) ) ) |
| 534 |
529 533
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) limCC ( H ` i ) ) ) |
| 535 |
464 534 8
|
limccog |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) limCC ( H ` i ) ) ) |
| 536 |
453
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( X + t ) ) ) limCC ( H ` i ) ) = ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) limCC ( H ` i ) ) ) |
| 537 |
535 536
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) limCC ( H ` i ) ) ) |
| 538 |
224 225 304 455 537
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) (,) ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) e. L^1 ) |
| 539 |
6
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> F : ( -u _pi [,] _pi ) --> CC ) |
| 540 |
54
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> -u _pi e. RR* ) |
| 541 |
56
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> _pi e. RR* ) |
| 542 |
27
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 543 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 544 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) |
| 545 |
163 173
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) = ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 546 |
545
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) = ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 547 |
544 546
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> t e. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ) |
| 548 |
547 117
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> ( X + t ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 549 |
540 541 542 543 548
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> ( X + t ) e. ( -u _pi [,] _pi ) ) |
| 550 |
539 549
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ) -> ( F ` ( X + t ) ) e. CC ) |
| 551 |
224 225 538 550
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( t e. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) |-> ( F ` ( X + t ) ) ) e. L^1 ) |
| 552 |
20 26 159 174 223 551
|
itgspltprt |
|- ( ph -> S. ( ( H ` 0 ) [,] ( H ` M ) ) ( F ` ( X + t ) ) _d t = sum_ i e. ( 0 ..^ M ) S. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ( F ` ( X + t ) ) _d t ) |
| 553 |
545
|
itgeq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ( F ` ( X + t ) ) _d t = S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 554 |
553
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( H ` i ) [,] ( H ` ( i + 1 ) ) ) ( F ` ( X + t ) ) _d t = sum_ i e. ( 0 ..^ M ) S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 555 |
552 554
|
eqtrd |
|- ( ph -> S. ( ( H ` 0 ) [,] ( H ` M ) ) ( F ` ( X + t ) ) _d t = sum_ i e. ( 0 ..^ M ) S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 556 |
126 155 555
|
3eqtrd |
|- ( ph -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + s ) ) _d s = sum_ i e. ( 0 ..^ M ) S. ( ( ( Q ` i ) - X ) [,] ( ( Q ` ( i + 1 ) ) - X ) ) ( F ` ( X + t ) ) _d t ) |
| 557 |
122 556
|
eqtr4d |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` t ) _d t = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + s ) ) _d s ) |
| 558 |
19 78 557
|
3eqtrd |
|- ( ph -> S. ( -u _pi [,] _pi ) ( F ` t ) _d t = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( F ` ( X + s ) ) _d s ) |