| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem92.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem92.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem92.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 4 |  | fourierdlem92.m |  |-  ( ph -> M e. NN ) | 
						
							| 5 |  | fourierdlem92.t |  |-  ( ph -> T e. RR ) | 
						
							| 6 |  | fourierdlem92.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 7 |  | fourierdlem92.fper |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 8 |  | fourierdlem92.s |  |-  S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) | 
						
							| 9 |  | fourierdlem92.h |  |-  H = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 10 |  | fourierdlem92.f |  |-  ( ph -> F : RR --> CC ) | 
						
							| 11 |  | fourierdlem92.cncf |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 12 |  | fourierdlem92.r |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 13 |  | fourierdlem92.l |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 14 | 1 | adantr |  |-  ( ( ph /\ 0 < T ) -> A e. RR ) | 
						
							| 15 | 2 | adantr |  |-  ( ( ph /\ 0 < T ) -> B e. RR ) | 
						
							| 16 | 4 | adantr |  |-  ( ( ph /\ 0 < T ) -> M e. NN ) | 
						
							| 17 | 5 | adantr |  |-  ( ( ph /\ 0 < T ) -> T e. RR ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ 0 < T ) -> 0 < T ) | 
						
							| 19 | 17 18 | elrpd |  |-  ( ( ph /\ 0 < T ) -> T e. RR+ ) | 
						
							| 20 | 6 | adantr |  |-  ( ( ph /\ 0 < T ) -> Q e. ( P ` M ) ) | 
						
							| 21 | 7 | adantlr |  |-  ( ( ( ph /\ 0 < T ) /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 22 |  | fveq2 |  |-  ( j = i -> ( Q ` j ) = ( Q ` i ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( j = i -> ( ( Q ` j ) + T ) = ( ( Q ` i ) + T ) ) | 
						
							| 24 | 23 | cbvmptv |  |-  ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) | 
						
							| 25 | 10 | adantr |  |-  ( ( ph /\ 0 < T ) -> F : RR --> CC ) | 
						
							| 26 | 11 | adantlr |  |-  ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 27 | 12 | adantlr |  |-  ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 28 | 13 | adantlr |  |-  ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 29 |  | eqeq1 |  |-  ( y = x -> ( y = ( Q ` i ) <-> x = ( Q ` i ) ) ) | 
						
							| 30 |  | eqeq1 |  |-  ( y = x -> ( y = ( Q ` ( i + 1 ) ) <-> x = ( Q ` ( i + 1 ) ) ) ) | 
						
							| 31 |  | fveq2 |  |-  ( y = x -> ( F ` y ) = ( F ` x ) ) | 
						
							| 32 | 30 31 | ifbieq2d |  |-  ( y = x -> if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) | 
						
							| 33 | 29 32 | ifbieq2d |  |-  ( y = x -> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) | 
						
							| 34 | 33 | cbvmptv |  |-  ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) | 
						
							| 35 |  | eqid |  |-  ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - T ) ) ) = ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - T ) ) ) | 
						
							| 36 | 14 15 3 16 19 20 21 24 25 26 27 28 34 35 | fourierdlem81 |  |-  ( ( ph /\ 0 < T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ T = 0 ) -> T = 0 ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ph /\ T = 0 ) -> ( A + T ) = ( A + 0 ) ) | 
						
							| 39 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ T = 0 ) -> A e. CC ) | 
						
							| 41 | 40 | addridd |  |-  ( ( ph /\ T = 0 ) -> ( A + 0 ) = A ) | 
						
							| 42 | 38 41 | eqtrd |  |-  ( ( ph /\ T = 0 ) -> ( A + T ) = A ) | 
						
							| 43 | 37 | oveq2d |  |-  ( ( ph /\ T = 0 ) -> ( B + T ) = ( B + 0 ) ) | 
						
							| 44 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ T = 0 ) -> B e. CC ) | 
						
							| 46 | 45 | addridd |  |-  ( ( ph /\ T = 0 ) -> ( B + 0 ) = B ) | 
						
							| 47 | 43 46 | eqtrd |  |-  ( ( ph /\ T = 0 ) -> ( B + T ) = B ) | 
						
							| 48 | 42 47 | oveq12d |  |-  ( ( ph /\ T = 0 ) -> ( ( A + T ) [,] ( B + T ) ) = ( A [,] B ) ) | 
						
							| 49 | 48 | itgeq1d |  |-  ( ( ph /\ T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 50 | 49 | adantlr |  |-  ( ( ( ph /\ -. 0 < T ) /\ T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 51 |  | simpll |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ph ) | 
						
							| 52 |  | simpr |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. T = 0 ) | 
						
							| 53 |  | simplr |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. 0 < T ) | 
						
							| 54 |  | ioran |  |-  ( -. ( T = 0 \/ 0 < T ) <-> ( -. T = 0 /\ -. 0 < T ) ) | 
						
							| 55 | 52 53 54 | sylanbrc |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. ( T = 0 \/ 0 < T ) ) | 
						
							| 56 | 51 5 | syl |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> T e. RR ) | 
						
							| 57 |  | 0red |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> 0 e. RR ) | 
						
							| 58 | 56 57 | lttrid |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ( T < 0 <-> -. ( T = 0 \/ 0 < T ) ) ) | 
						
							| 59 | 55 58 | mpbird |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> T < 0 ) | 
						
							| 60 | 56 | lt0neg1d |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ( T < 0 <-> 0 < -u T ) ) | 
						
							| 61 | 59 60 | mpbid |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> 0 < -u T ) | 
						
							| 62 | 1 5 | readdcld |  |-  ( ph -> ( A + T ) e. RR ) | 
						
							| 63 | 62 | recnd |  |-  ( ph -> ( A + T ) e. CC ) | 
						
							| 64 | 5 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 65 | 63 64 | negsubd |  |-  ( ph -> ( ( A + T ) + -u T ) = ( ( A + T ) - T ) ) | 
						
							| 66 | 39 64 | pncand |  |-  ( ph -> ( ( A + T ) - T ) = A ) | 
						
							| 67 | 65 66 | eqtrd |  |-  ( ph -> ( ( A + T ) + -u T ) = A ) | 
						
							| 68 | 2 5 | readdcld |  |-  ( ph -> ( B + T ) e. RR ) | 
						
							| 69 | 68 | recnd |  |-  ( ph -> ( B + T ) e. CC ) | 
						
							| 70 | 69 64 | negsubd |  |-  ( ph -> ( ( B + T ) + -u T ) = ( ( B + T ) - T ) ) | 
						
							| 71 | 44 64 | pncand |  |-  ( ph -> ( ( B + T ) - T ) = B ) | 
						
							| 72 | 70 71 | eqtrd |  |-  ( ph -> ( ( B + T ) + -u T ) = B ) | 
						
							| 73 | 67 72 | oveq12d |  |-  ( ph -> ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) = ( A [,] B ) ) | 
						
							| 74 | 73 | eqcomd |  |-  ( ph -> ( A [,] B ) = ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ) | 
						
							| 75 | 74 | itgeq1d |  |-  ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x ) | 
						
							| 77 | 1 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> A e. RR ) | 
						
							| 78 | 5 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> T e. RR ) | 
						
							| 79 | 77 78 | readdcld |  |-  ( ( ph /\ 0 < -u T ) -> ( A + T ) e. RR ) | 
						
							| 80 | 2 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> B e. RR ) | 
						
							| 81 | 80 78 | readdcld |  |-  ( ( ph /\ 0 < -u T ) -> ( B + T ) e. RR ) | 
						
							| 82 |  | eqid |  |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 83 | 4 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> M e. NN ) | 
						
							| 84 | 78 | renegcld |  |-  ( ( ph /\ 0 < -u T ) -> -u T e. RR ) | 
						
							| 85 |  | simpr |  |-  ( ( ph /\ 0 < -u T ) -> 0 < -u T ) | 
						
							| 86 | 84 85 | elrpd |  |-  ( ( ph /\ 0 < -u T ) -> -u T e. RR+ ) | 
						
							| 87 | 3 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 88 | 4 87 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 89 | 6 88 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 90 | 89 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 91 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 92 | 90 91 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 93 | 92 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 94 | 5 | adantr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> T e. RR ) | 
						
							| 95 | 93 94 | readdcld |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) + T ) e. RR ) | 
						
							| 96 | 95 8 | fmptd |  |-  ( ph -> S : ( 0 ... M ) --> RR ) | 
						
							| 97 |  | reex |  |-  RR e. _V | 
						
							| 98 | 97 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 99 |  | ovex |  |-  ( 0 ... M ) e. _V | 
						
							| 100 | 99 | a1i |  |-  ( ph -> ( 0 ... M ) e. _V ) | 
						
							| 101 | 98 100 | elmapd |  |-  ( ph -> ( S e. ( RR ^m ( 0 ... M ) ) <-> S : ( 0 ... M ) --> RR ) ) | 
						
							| 102 | 96 101 | mpbird |  |-  ( ph -> S e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 103 | 8 | a1i |  |-  ( ph -> S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) ) | 
						
							| 104 |  | fveq2 |  |-  ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( i = 0 -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ph /\ i = 0 ) -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) | 
						
							| 107 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 108 | 4 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 109 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 110 | 109 | a1i |  |-  ( ph -> 0 <_ 0 ) | 
						
							| 111 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 112 | 111 | nn0ge0d |  |-  ( M e. NN -> 0 <_ M ) | 
						
							| 113 | 4 112 | syl |  |-  ( ph -> 0 <_ M ) | 
						
							| 114 | 107 108 107 110 113 | elfzd |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 115 | 92 114 | ffvelcdmd |  |-  ( ph -> ( Q ` 0 ) e. RR ) | 
						
							| 116 | 115 5 | readdcld |  |-  ( ph -> ( ( Q ` 0 ) + T ) e. RR ) | 
						
							| 117 | 103 106 114 116 | fvmptd |  |-  ( ph -> ( S ` 0 ) = ( ( Q ` 0 ) + T ) ) | 
						
							| 118 |  | simprll |  |-  ( ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) -> ( Q ` 0 ) = A ) | 
						
							| 119 | 89 118 | syl |  |-  ( ph -> ( Q ` 0 ) = A ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ph -> ( ( Q ` 0 ) + T ) = ( A + T ) ) | 
						
							| 121 | 117 120 | eqtrd |  |-  ( ph -> ( S ` 0 ) = ( A + T ) ) | 
						
							| 122 |  | fveq2 |  |-  ( i = M -> ( Q ` i ) = ( Q ` M ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( i = M -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) | 
						
							| 124 | 123 | adantl |  |-  ( ( ph /\ i = M ) -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) | 
						
							| 125 | 4 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 126 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 127 | 125 126 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 128 |  | eluzfz2 |  |-  ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) | 
						
							| 129 | 127 128 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 130 | 92 129 | ffvelcdmd |  |-  ( ph -> ( Q ` M ) e. RR ) | 
						
							| 131 | 130 5 | readdcld |  |-  ( ph -> ( ( Q ` M ) + T ) e. RR ) | 
						
							| 132 | 103 124 129 131 | fvmptd |  |-  ( ph -> ( S ` M ) = ( ( Q ` M ) + T ) ) | 
						
							| 133 |  | simprlr |  |-  ( ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) -> ( Q ` M ) = B ) | 
						
							| 134 | 89 133 | syl |  |-  ( ph -> ( Q ` M ) = B ) | 
						
							| 135 | 134 | oveq1d |  |-  ( ph -> ( ( Q ` M ) + T ) = ( B + T ) ) | 
						
							| 136 | 132 135 | eqtrd |  |-  ( ph -> ( S ` M ) = ( B + T ) ) | 
						
							| 137 | 121 136 | jca |  |-  ( ph -> ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) ) | 
						
							| 138 | 92 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 139 |  | elfzofz |  |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) | 
						
							| 140 | 139 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 141 | 138 140 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 142 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 144 | 138 143 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 145 | 5 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR ) | 
						
							| 146 | 89 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 147 | 146 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 148 | 141 144 145 147 | ltadd1dd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) | 
						
							| 149 | 141 145 | readdcld |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR ) | 
						
							| 150 | 8 | fvmpt2 |  |-  ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) + T ) e. RR ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) | 
						
							| 151 | 140 149 150 | syl2anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) | 
						
							| 152 | 8 24 | eqtr4i |  |-  S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) | 
						
							| 153 | 152 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ) | 
						
							| 154 |  | fveq2 |  |-  ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 155 | 154 | oveq1d |  |-  ( j = ( i + 1 ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) | 
						
							| 156 | 155 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) | 
						
							| 157 | 144 145 | readdcld |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) | 
						
							| 158 | 153 156 143 157 | fvmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) | 
						
							| 159 | 148 151 158 | 3brtr4d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) < ( S ` ( i + 1 ) ) ) | 
						
							| 160 | 159 | ralrimiva |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) | 
						
							| 161 | 102 137 160 | jca32 |  |-  ( ph -> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) | 
						
							| 162 | 9 | fourierdlem2 |  |-  ( M e. NN -> ( S e. ( H ` M ) <-> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) | 
						
							| 163 | 4 162 | syl |  |-  ( ph -> ( S e. ( H ` M ) <-> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) | 
						
							| 164 | 161 163 | mpbird |  |-  ( ph -> S e. ( H ` M ) ) | 
						
							| 165 | 9 | fveq1i |  |-  ( H ` M ) = ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) | 
						
							| 166 | 164 165 | eleqtrdi |  |-  ( ph -> S e. ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> S e. ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) ) | 
						
							| 168 | 62 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR ) | 
						
							| 169 | 68 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR ) | 
						
							| 170 |  | simpr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) | 
						
							| 171 |  | eliccre |  |-  ( ( ( A + T ) e. RR /\ ( B + T ) e. RR /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) | 
						
							| 172 | 168 169 170 171 | syl3anc |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) | 
						
							| 173 | 172 | recnd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. CC ) | 
						
							| 174 | 64 | negcld |  |-  ( ph -> -u T e. CC ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> -u T e. CC ) | 
						
							| 176 | 173 175 | addcld |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. CC ) | 
						
							| 177 |  | simpl |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ph ) | 
						
							| 178 | 1 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A e. RR ) | 
						
							| 179 | 2 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> B e. RR ) | 
						
							| 180 | 5 | renegcld |  |-  ( ph -> -u T e. RR ) | 
						
							| 181 | 180 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> -u T e. RR ) | 
						
							| 182 | 172 181 | readdcld |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. RR ) | 
						
							| 183 | 65 66 | eqtr2d |  |-  ( ph -> A = ( ( A + T ) + -u T ) ) | 
						
							| 184 | 183 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A = ( ( A + T ) + -u T ) ) | 
						
							| 185 | 168 | rexrd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR* ) | 
						
							| 186 | 169 | rexrd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR* ) | 
						
							| 187 |  | iccgelb |  |-  ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) | 
						
							| 188 | 185 186 170 187 | syl3anc |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) | 
						
							| 189 | 168 172 181 188 | leadd1dd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( A + T ) + -u T ) <_ ( x + -u T ) ) | 
						
							| 190 | 184 189 | eqbrtrd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A <_ ( x + -u T ) ) | 
						
							| 191 |  | iccleub |  |-  ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) | 
						
							| 192 | 185 186 170 191 | syl3anc |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) | 
						
							| 193 | 172 169 181 192 | leadd1dd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) <_ ( ( B + T ) + -u T ) ) | 
						
							| 194 | 169 | recnd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. CC ) | 
						
							| 195 | 64 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> T e. CC ) | 
						
							| 196 | 194 195 | negsubd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) + -u T ) = ( ( B + T ) - T ) ) | 
						
							| 197 | 71 | adantr |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) - T ) = B ) | 
						
							| 198 | 196 197 | eqtrd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) + -u T ) = B ) | 
						
							| 199 | 193 198 | breqtrd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) <_ B ) | 
						
							| 200 | 178 179 182 190 199 | eliccd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. ( A [,] B ) ) | 
						
							| 201 | 177 200 | jca |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ph /\ ( x + -u T ) e. ( A [,] B ) ) ) | 
						
							| 202 |  | eleq1 |  |-  ( y = ( x + -u T ) -> ( y e. ( A [,] B ) <-> ( x + -u T ) e. ( A [,] B ) ) ) | 
						
							| 203 | 202 | anbi2d |  |-  ( y = ( x + -u T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x + -u T ) e. ( A [,] B ) ) ) ) | 
						
							| 204 |  | oveq1 |  |-  ( y = ( x + -u T ) -> ( y + T ) = ( ( x + -u T ) + T ) ) | 
						
							| 205 | 204 | fveq2d |  |-  ( y = ( x + -u T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x + -u T ) + T ) ) ) | 
						
							| 206 |  | fveq2 |  |-  ( y = ( x + -u T ) -> ( F ` y ) = ( F ` ( x + -u T ) ) ) | 
						
							| 207 | 205 206 | eqeq12d |  |-  ( y = ( x + -u T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) | 
						
							| 208 | 203 207 | imbi12d |  |-  ( y = ( x + -u T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x + -u T ) e. ( A [,] B ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) ) | 
						
							| 209 |  | eleq1 |  |-  ( x = y -> ( x e. ( A [,] B ) <-> y e. ( A [,] B ) ) ) | 
						
							| 210 | 209 | anbi2d |  |-  ( x = y -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ y e. ( A [,] B ) ) ) ) | 
						
							| 211 |  | oveq1 |  |-  ( x = y -> ( x + T ) = ( y + T ) ) | 
						
							| 212 | 211 | fveq2d |  |-  ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) | 
						
							| 213 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 214 | 212 213 | eqeq12d |  |-  ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) | 
						
							| 215 | 210 214 | imbi12d |  |-  ( x = y -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) | 
						
							| 216 | 215 7 | chvarvv |  |-  ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) | 
						
							| 217 | 208 216 | vtoclg |  |-  ( ( x + -u T ) e. CC -> ( ( ph /\ ( x + -u T ) e. ( A [,] B ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) | 
						
							| 218 | 176 201 217 | sylc |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) | 
						
							| 219 | 173 195 | negsubd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) = ( x - T ) ) | 
						
							| 220 | 219 | oveq1d |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x + -u T ) + T ) = ( ( x - T ) + T ) ) | 
						
							| 221 | 173 195 | npcand |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x - T ) + T ) = x ) | 
						
							| 222 | 220 221 | eqtrd |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x + -u T ) + T ) = x ) | 
						
							| 223 | 222 | fveq2d |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` x ) ) | 
						
							| 224 | 218 223 | eqtr3d |  |-  ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( x + -u T ) ) = ( F ` x ) ) | 
						
							| 225 | 224 | adantlr |  |-  ( ( ( ph /\ 0 < -u T ) /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( x + -u T ) ) = ( F ` x ) ) | 
						
							| 226 |  | fveq2 |  |-  ( j = i -> ( S ` j ) = ( S ` i ) ) | 
						
							| 227 | 226 | oveq1d |  |-  ( j = i -> ( ( S ` j ) + -u T ) = ( ( S ` i ) + -u T ) ) | 
						
							| 228 | 227 | cbvmptv |  |-  ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) = ( i e. ( 0 ... M ) |-> ( ( S ` i ) + -u T ) ) | 
						
							| 229 | 10 | adantr |  |-  ( ( ph /\ 0 < -u T ) -> F : RR --> CC ) | 
						
							| 230 | 10 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) | 
						
							| 231 |  | ioossre |  |-  ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR | 
						
							| 232 | 231 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 233 | 230 232 | feqresmpt |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) | 
						
							| 234 | 151 158 | oveq12d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) = ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) | 
						
							| 235 | 141 144 145 | iooshift |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) | 
						
							| 236 | 234 235 | eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) | 
						
							| 237 | 236 | mpteq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( F ` x ) ) ) | 
						
							| 238 |  | simpll |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ph ) | 
						
							| 239 |  | simplr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> i e. ( 0 ..^ M ) ) | 
						
							| 240 | 235 | eleq2d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) <-> x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) ) | 
						
							| 241 | 240 | biimpar |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) | 
						
							| 242 | 141 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 243 | 242 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 244 | 144 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 245 | 244 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 246 |  | elioore |  |-  ( x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) -> x e. RR ) | 
						
							| 247 | 246 | adantl |  |-  ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) | 
						
							| 248 | 5 | adantr |  |-  ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) | 
						
							| 249 | 247 248 | resubcld |  |-  ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) | 
						
							| 250 | 249 | 3adant2 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) | 
						
							| 251 | 141 | recnd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) | 
						
							| 252 | 64 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. CC ) | 
						
							| 253 | 251 252 | pncand |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) - T ) = ( Q ` i ) ) | 
						
							| 254 | 253 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) | 
						
							| 255 | 254 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) | 
						
							| 256 | 149 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR ) | 
						
							| 257 | 247 | 3adant2 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) | 
						
							| 258 | 5 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) | 
						
							| 259 | 149 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR* ) | 
						
							| 260 | 259 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR* ) | 
						
							| 261 | 157 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) | 
						
							| 262 | 261 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) | 
						
							| 263 |  | simp3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) | 
						
							| 264 |  | ioogtlb |  |-  ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) < x ) | 
						
							| 265 | 260 262 263 264 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) < x ) | 
						
							| 266 | 256 257 258 265 | ltsub1dd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) - T ) < ( x - T ) ) | 
						
							| 267 | 255 266 | eqbrtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) < ( x - T ) ) | 
						
							| 268 | 157 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) | 
						
							| 269 |  | iooltub |  |-  ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x < ( ( Q ` ( i + 1 ) ) + T ) ) | 
						
							| 270 | 260 262 263 269 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x < ( ( Q ` ( i + 1 ) ) + T ) ) | 
						
							| 271 | 257 268 258 270 | ltsub1dd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) | 
						
							| 272 | 144 | recnd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) | 
						
							| 273 | 272 252 | pncand |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 274 | 273 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 275 | 271 274 | breqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 276 | 243 245 250 267 275 | eliood |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 277 | 238 239 241 276 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 278 |  | fvres |  |-  ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) | 
						
							| 279 | 277 278 | syl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) | 
						
							| 280 | 238 241 249 | syl2anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. RR ) | 
						
							| 281 | 1 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A e. RR ) | 
						
							| 282 | 2 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> B e. RR ) | 
						
							| 283 | 66 | eqcomd |  |-  ( ph -> A = ( ( A + T ) - T ) ) | 
						
							| 284 | 283 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A = ( ( A + T ) - T ) ) | 
						
							| 285 | 62 | 3ad2ant1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) e. RR ) | 
						
							| 286 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR ) | 
						
							| 287 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 288 | 287 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) | 
						
							| 289 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 290 | 289 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) | 
						
							| 291 | 3 4 6 | fourierdlem15 |  |-  ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) | 
						
							| 292 | 291 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) | 
						
							| 293 | 292 140 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( A [,] B ) ) | 
						
							| 294 |  | iccgelb |  |-  ( ( A e. RR* /\ B e. RR* /\ ( Q ` i ) e. ( A [,] B ) ) -> A <_ ( Q ` i ) ) | 
						
							| 295 | 288 290 293 294 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A <_ ( Q ` i ) ) | 
						
							| 296 | 286 141 145 295 | leadd1dd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A + T ) <_ ( ( Q ` i ) + T ) ) | 
						
							| 297 | 296 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) <_ ( ( Q ` i ) + T ) ) | 
						
							| 298 | 285 256 257 297 265 | lelttrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) < x ) | 
						
							| 299 | 285 257 258 298 | ltsub1dd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( A + T ) - T ) < ( x - T ) ) | 
						
							| 300 | 284 299 | eqbrtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A < ( x - T ) ) | 
						
							| 301 | 281 250 300 | ltled |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A <_ ( x - T ) ) | 
						
							| 302 | 144 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 303 | 292 143 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) | 
						
							| 304 |  | iccleub |  |-  ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( i + 1 ) ) <_ B ) | 
						
							| 305 | 288 290 303 304 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) <_ B ) | 
						
							| 306 | 305 | 3adant3 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) <_ B ) | 
						
							| 307 | 250 302 282 275 306 | ltletrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < B ) | 
						
							| 308 | 250 282 307 | ltled |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ B ) | 
						
							| 309 | 281 282 250 301 308 | eliccd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( A [,] B ) ) | 
						
							| 310 | 238 239 241 309 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. ( A [,] B ) ) | 
						
							| 311 | 238 310 | jca |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) | 
						
							| 312 |  | eleq1 |  |-  ( y = ( x - T ) -> ( y e. ( A [,] B ) <-> ( x - T ) e. ( A [,] B ) ) ) | 
						
							| 313 | 312 | anbi2d |  |-  ( y = ( x - T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) ) | 
						
							| 314 |  | oveq1 |  |-  ( y = ( x - T ) -> ( y + T ) = ( ( x - T ) + T ) ) | 
						
							| 315 | 314 | fveq2d |  |-  ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) | 
						
							| 316 |  | fveq2 |  |-  ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) | 
						
							| 317 | 315 316 | eqeq12d |  |-  ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) | 
						
							| 318 | 313 317 | imbi12d |  |-  ( y = ( x - T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) | 
						
							| 319 | 318 216 | vtoclg |  |-  ( ( x - T ) e. RR -> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) | 
						
							| 320 | 280 311 319 | sylc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) | 
						
							| 321 | 241 246 | syl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. RR ) | 
						
							| 322 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 323 | 322 | adantl |  |-  ( ( ph /\ x e. RR ) -> x e. CC ) | 
						
							| 324 | 64 | adantr |  |-  ( ( ph /\ x e. RR ) -> T e. CC ) | 
						
							| 325 | 323 324 | npcand |  |-  ( ( ph /\ x e. RR ) -> ( ( x - T ) + T ) = x ) | 
						
							| 326 | 325 | fveq2d |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) | 
						
							| 327 | 238 321 326 | syl2anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) | 
						
							| 328 | 279 320 327 | 3eqtr2rd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` x ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) | 
						
							| 329 | 328 | mpteq2dva |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( F ` x ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) | 
						
							| 330 | 233 237 329 | 3eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) | 
						
							| 331 |  | ioosscn |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC | 
						
							| 332 | 331 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) | 
						
							| 333 |  | eqeq1 |  |-  ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) | 
						
							| 334 | 333 | rexbidv |  |-  ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) | 
						
							| 335 |  | oveq1 |  |-  ( z = y -> ( z + T ) = ( y + T ) ) | 
						
							| 336 | 335 | eqeq2d |  |-  ( z = y -> ( x = ( z + T ) <-> x = ( y + T ) ) ) | 
						
							| 337 | 336 | cbvrexvw |  |-  ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) | 
						
							| 338 | 334 337 | bitrdi |  |-  ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) ) | 
						
							| 339 | 338 | cbvrabv |  |-  { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } | 
						
							| 340 |  | eqid |  |-  ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) | 
						
							| 341 | 332 252 339 11 340 | cncfshift |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) e. ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) ) | 
						
							| 342 | 236 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) | 
						
							| 343 | 342 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) = ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 344 | 341 343 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 345 | 330 344 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 346 | 345 | adantlr |  |-  ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 347 |  | ffdm |  |-  ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) ) | 
						
							| 348 | 10 347 | syl |  |-  ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) ) | 
						
							| 349 | 348 | simpld |  |-  ( ph -> F : dom F --> CC ) | 
						
							| 350 | 349 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : dom F --> CC ) | 
						
							| 351 |  | ioossre |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR | 
						
							| 352 |  | fdm |  |-  ( F : RR --> CC -> dom F = RR ) | 
						
							| 353 | 230 352 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = RR ) | 
						
							| 354 | 351 353 | sseqtrrid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) | 
						
							| 355 | 339 | eqcomi |  |-  { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } | 
						
							| 356 | 232 342 353 | 3sstr4d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F ) | 
						
							| 357 | 339 356 | eqsstrrid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } C_ dom F ) | 
						
							| 358 |  | simpll |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) | 
						
							| 359 | 358 287 | syl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) | 
						
							| 360 | 358 289 | syl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) | 
						
							| 361 | 358 291 | syl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) | 
						
							| 362 |  | simplr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 363 |  | ioossicc |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) | 
						
							| 364 | 363 | sseli |  |-  ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) | 
						
							| 365 | 364 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) | 
						
							| 366 | 359 360 361 362 365 | fourierdlem1 |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( A [,] B ) ) | 
						
							| 367 |  | eleq1 |  |-  ( x = z -> ( x e. ( A [,] B ) <-> z e. ( A [,] B ) ) ) | 
						
							| 368 | 367 | anbi2d |  |-  ( x = z -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ z e. ( A [,] B ) ) ) ) | 
						
							| 369 |  | oveq1 |  |-  ( x = z -> ( x + T ) = ( z + T ) ) | 
						
							| 370 | 369 | fveq2d |  |-  ( x = z -> ( F ` ( x + T ) ) = ( F ` ( z + T ) ) ) | 
						
							| 371 |  | fveq2 |  |-  ( x = z -> ( F ` x ) = ( F ` z ) ) | 
						
							| 372 | 370 371 | eqeq12d |  |-  ( x = z -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( z + T ) ) = ( F ` z ) ) ) | 
						
							| 373 | 368 372 | imbi12d |  |-  ( x = z -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) ) ) | 
						
							| 374 | 373 7 | chvarvv |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) | 
						
							| 375 | 358 366 374 | syl2anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) | 
						
							| 376 | 350 332 354 252 355 357 375 12 | limcperiod |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` i ) + T ) ) ) | 
						
							| 377 | 355 342 | eqtrid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) | 
						
							| 378 | 377 | reseq2d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) = ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) | 
						
							| 379 | 151 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) | 
						
							| 380 | 378 379 | oveq12d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` i ) + T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) | 
						
							| 381 | 376 380 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) | 
						
							| 382 | 381 | adantlr |  |-  ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) | 
						
							| 383 | 350 332 354 252 355 357 375 13 | limcperiod |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) ) | 
						
							| 384 | 158 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) | 
						
							| 385 | 378 384 | oveq12d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) | 
						
							| 386 | 383 385 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) | 
						
							| 387 | 386 | adantlr |  |-  ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) | 
						
							| 388 |  | eqeq1 |  |-  ( y = x -> ( y = ( S ` i ) <-> x = ( S ` i ) ) ) | 
						
							| 389 |  | eqeq1 |  |-  ( y = x -> ( y = ( S ` ( i + 1 ) ) <-> x = ( S ` ( i + 1 ) ) ) ) | 
						
							| 390 | 389 31 | ifbieq2d |  |-  ( y = x -> if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) | 
						
							| 391 | 388 390 | ifbieq2d |  |-  ( y = x -> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) | 
						
							| 392 | 391 | cbvmptv |  |-  ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) | 
						
							| 393 |  | eqid |  |-  ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - -u T ) ) ) = ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - -u T ) ) ) | 
						
							| 394 | 79 81 82 83 86 167 225 228 229 346 382 387 392 393 | fourierdlem81 |  |-  ( ( ph /\ 0 < -u T ) -> S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x = S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x ) | 
						
							| 395 | 76 394 | eqtr2d |  |-  ( ( ph /\ 0 < -u T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 396 | 51 61 395 | syl2anc |  |-  ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 397 | 50 396 | pm2.61dan |  |-  ( ( ph /\ -. 0 < T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 398 | 36 397 | pm2.61dan |  |-  ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |