| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem81.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem81.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem81.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 4 |
|
fourierdlem81.m |
|- ( ph -> M e. NN ) |
| 5 |
|
fourierdlem81.t |
|- ( ph -> T e. RR+ ) |
| 6 |
|
fourierdlem81.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 7 |
|
fourierdlem81.fper |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 8 |
|
fourierdlem81.s |
|- S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) |
| 9 |
|
fourierdlem81.f |
|- ( ph -> F : RR --> CC ) |
| 10 |
|
fourierdlem81.cncf |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 11 |
|
fourierdlem81.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 12 |
|
fourierdlem81.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 13 |
|
fourierdlem81.g |
|- G = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 14 |
|
fourierdlem81.h |
|- H = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> ( G ` ( x - T ) ) ) |
| 15 |
3
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 16 |
4 15
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 17 |
6 16
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 18 |
17
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 19 |
18
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
| 20 |
19
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
| 21 |
20
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
| 22 |
19
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
| 23 |
22
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
| 24 |
21 23
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 25 |
24
|
itgeq1d |
|- ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( F ` x ) _d x ) |
| 26 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 27 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 28 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 29 |
28
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 30 |
27 29
|
eqtr4i |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 31 |
4 30
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 32 |
17
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 33 |
|
reex |
|- RR e. _V |
| 34 |
33
|
a1i |
|- ( ph -> RR e. _V ) |
| 35 |
|
ovex |
|- ( 0 ... M ) e. _V |
| 36 |
35
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
| 37 |
34 36
|
elmapd |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) ) |
| 38 |
32 37
|
mpbid |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 39 |
18
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 40 |
39
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 41 |
9
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> F : RR --> CC ) |
| 42 |
20 1
|
eqeltrd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 43 |
22 2
|
eqeltrd |
|- ( ph -> ( Q ` M ) e. RR ) |
| 44 |
42 43
|
iccssred |
|- ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) C_ RR ) |
| 45 |
44
|
sselda |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. RR ) |
| 46 |
41 45
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( F ` x ) e. CC ) |
| 47 |
38
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 48 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 49 |
48
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 50 |
47 49
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 51 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 52 |
51
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 53 |
47 52
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 54 |
9
|
feqmptd |
|- ( ph -> F = ( x e. RR |-> ( F ` x ) ) ) |
| 55 |
54
|
reseq1d |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( x e. RR |-> ( F ` x ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( x e. RR |-> ( F ` x ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 57 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
| 58 |
57
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 59 |
58
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. RR |-> ( F ` x ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
| 60 |
56 59
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 61 |
50 53 10 12 11
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. L^1 ) |
| 62 |
60 61
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
| 63 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : RR --> CC ) |
| 64 |
50 53
|
iccssred |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 65 |
64
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 66 |
63 65
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 67 |
50 53 62 66
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
| 68 |
26 31 38 40 46 67
|
itgspltprt |
|- ( ph -> S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( F ` x ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 69 |
8
|
a1i |
|- ( ph -> S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) ) |
| 70 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
| 71 |
70
|
oveq1d |
|- ( i = 0 -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
| 73 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 74 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 75 |
73 74
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 76 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 77 |
75 76
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 78 |
5
|
rpred |
|- ( ph -> T e. RR ) |
| 79 |
42 78
|
readdcld |
|- ( ph -> ( ( Q ` 0 ) + T ) e. RR ) |
| 80 |
69 72 77 79
|
fvmptd |
|- ( ph -> ( S ` 0 ) = ( ( Q ` 0 ) + T ) ) |
| 81 |
20
|
oveq1d |
|- ( ph -> ( ( Q ` 0 ) + T ) = ( A + T ) ) |
| 82 |
80 81
|
eqtr2d |
|- ( ph -> ( A + T ) = ( S ` 0 ) ) |
| 83 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
| 84 |
83
|
oveq1d |
|- ( i = M -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
| 86 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 87 |
75 86
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 88 |
43 78
|
readdcld |
|- ( ph -> ( ( Q ` M ) + T ) e. RR ) |
| 89 |
69 85 87 88
|
fvmptd |
|- ( ph -> ( S ` M ) = ( ( Q ` M ) + T ) ) |
| 90 |
22
|
oveq1d |
|- ( ph -> ( ( Q ` M ) + T ) = ( B + T ) ) |
| 91 |
89 90
|
eqtr2d |
|- ( ph -> ( B + T ) = ( S ` M ) ) |
| 92 |
82 91
|
oveq12d |
|- ( ph -> ( ( A + T ) [,] ( B + T ) ) = ( ( S ` 0 ) [,] ( S ` M ) ) ) |
| 93 |
92
|
itgeq1d |
|- ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( ( S ` 0 ) [,] ( S ` M ) ) ( F ` x ) _d x ) |
| 94 |
38
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 95 |
78
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> T e. RR ) |
| 96 |
94 95
|
readdcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
| 97 |
96 8
|
fmptd |
|- ( ph -> S : ( 0 ... M ) --> RR ) |
| 98 |
78
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR ) |
| 99 |
50 53 98 40
|
ltadd1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
| 100 |
48 96
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
| 101 |
8
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) + T ) e. RR ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
| 102 |
49 100 101
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
| 103 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
| 104 |
103
|
oveq1d |
|- ( i = j -> ( ( Q ` i ) + T ) = ( ( Q ` j ) + T ) ) |
| 105 |
104
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) |
| 106 |
8 105
|
eqtri |
|- S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) |
| 107 |
106
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ) |
| 108 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) |
| 109 |
108
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 110 |
109
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 111 |
53 98
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
| 112 |
107 110 52 111
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 113 |
99 102 112
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) < ( S ` ( i + 1 ) ) ) |
| 114 |
9
|
adantr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> F : RR --> CC ) |
| 115 |
80 79
|
eqeltrd |
|- ( ph -> ( S ` 0 ) e. RR ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( S ` 0 ) e. RR ) |
| 117 |
89 88
|
eqeltrd |
|- ( ph -> ( S ` M ) e. RR ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( S ` M ) e. RR ) |
| 119 |
116 118
|
iccssred |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( ( S ` 0 ) [,] ( S ` M ) ) C_ RR ) |
| 120 |
|
simpr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) |
| 121 |
119 120
|
sseldd |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> x e. RR ) |
| 122 |
114 121
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( F ` x ) e. CC ) |
| 123 |
102 100
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) e. RR ) |
| 124 |
112 111
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
| 125 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
| 126 |
125
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 127 |
|
eqeq1 |
|- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
| 128 |
127
|
rexbidv |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) |
| 129 |
|
oveq1 |
|- ( z = y -> ( z + T ) = ( y + T ) ) |
| 130 |
129
|
eqeq2d |
|- ( z = y -> ( x = ( z + T ) <-> x = ( y + T ) ) ) |
| 131 |
130
|
cbvrexvw |
|- ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) |
| 132 |
128 131
|
bitrdi |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) ) |
| 133 |
132
|
cbvrabv |
|- { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } |
| 134 |
|
fdm |
|- ( F : RR --> CC -> dom F = RR ) |
| 135 |
9 134
|
syl |
|- ( ph -> dom F = RR ) |
| 136 |
135
|
feq2d |
|- ( ph -> ( F : dom F --> CC <-> F : RR --> CC ) ) |
| 137 |
9 136
|
mpbird |
|- ( ph -> F : dom F --> CC ) |
| 138 |
137
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : dom F --> CC ) |
| 139 |
|
elioore |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. RR ) |
| 140 |
139
|
adantl |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. RR ) |
| 141 |
78
|
adantr |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> T e. RR ) |
| 142 |
140 141
|
readdcld |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z + T ) e. RR ) |
| 143 |
142
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z + T ) e. RR ) |
| 144 |
143
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> ( z + T ) e. RR ) |
| 145 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> w = ( z + T ) ) |
| 146 |
135
|
3ad2ant1 |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> dom F = RR ) |
| 147 |
146
|
3adant1r |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> dom F = RR ) |
| 148 |
144 145 147
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> w e. dom F ) |
| 149 |
148
|
3exp |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( w = ( z + T ) -> w e. dom F ) ) ) |
| 150 |
149
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. CC ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( w = ( z + T ) -> w e. dom F ) ) ) |
| 151 |
150
|
rexlimdv |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. CC ) -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) -> w e. dom F ) ) |
| 152 |
151
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. w e. CC ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) -> w e. dom F ) ) |
| 153 |
|
rabss |
|- ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F <-> A. w e. CC ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) -> w e. dom F ) ) |
| 154 |
152 153
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F ) |
| 155 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
| 156 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 157 |
156
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
| 158 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 159 |
158
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
| 160 |
3 4 6
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 161 |
160
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 162 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 163 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 164 |
163
|
sseli |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 165 |
164
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 166 |
157 159 161 162 165
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
| 167 |
155 166 7
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 168 |
126 98 133 138 154 167 10
|
cncfperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) e. ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) ) |
| 169 |
128
|
elrab |
|- ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } <-> ( x e. CC /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) |
| 170 |
169
|
simprbi |
|- ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
| 171 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
| 172 |
|
nfv |
|- F/ z ( ph /\ i e. ( 0 ..^ M ) ) |
| 173 |
|
nfre1 |
|- F/ z E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) |
| 174 |
172 173
|
nfan |
|- F/ z ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
| 175 |
|
nfv |
|- F/ z ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) |
| 176 |
|
simp3 |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
| 177 |
142
|
3adant3 |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( z + T ) e. RR ) |
| 178 |
176 177
|
eqeltrd |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x e. RR ) |
| 179 |
178
|
3adant1r |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x e. RR ) |
| 180 |
50
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 181 |
139
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. RR ) |
| 182 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> T e. RR ) |
| 183 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 184 |
50
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 185 |
184
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 186 |
53
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 187 |
186
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 188 |
|
elioo2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( z e. RR /\ ( Q ` i ) < z /\ z < ( Q ` ( i + 1 ) ) ) ) ) |
| 189 |
185 187 188
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( z e. RR /\ ( Q ` i ) < z /\ z < ( Q ` ( i + 1 ) ) ) ) ) |
| 190 |
183 189
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z e. RR /\ ( Q ` i ) < z /\ z < ( Q ` ( i + 1 ) ) ) ) |
| 191 |
190
|
simp2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < z ) |
| 192 |
180 181 182 191
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) + T ) < ( z + T ) ) |
| 193 |
192
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( ( Q ` i ) + T ) < ( z + T ) ) |
| 194 |
102
|
3ad2ant1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
| 195 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
| 196 |
193 194 195
|
3brtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( S ` i ) < x ) |
| 197 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 198 |
190
|
simp3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z < ( Q ` ( i + 1 ) ) ) |
| 199 |
181 197 182 198
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
| 200 |
199
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( z + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
| 201 |
112
|
3ad2ant1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 202 |
200 195 201
|
3brtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x < ( S ` ( i + 1 ) ) ) |
| 203 |
179 196 202
|
3jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) |
| 204 |
203
|
3exp |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( x = ( z + T ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) ) |
| 205 |
204
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( x = ( z + T ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) ) |
| 206 |
174 175 205
|
rexlimd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
| 207 |
171 206
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) |
| 208 |
123
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) e. RR* ) |
| 209 |
208
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( S ` i ) e. RR* ) |
| 210 |
124
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
| 211 |
210
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
| 212 |
|
elioo2 |
|- ( ( ( S ` i ) e. RR* /\ ( S ` ( i + 1 ) ) e. RR* ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) <-> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
| 213 |
209 211 212
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) <-> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
| 214 |
207 213
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 215 |
170 214
|
sylan2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 216 |
|
elioore |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> x e. RR ) |
| 217 |
216
|
recnd |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> x e. CC ) |
| 218 |
217
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 219 |
184
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 220 |
186
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 221 |
216
|
adantl |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 222 |
78
|
adantr |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> T e. RR ) |
| 223 |
221 222
|
resubcld |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. RR ) |
| 224 |
223
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. RR ) |
| 225 |
102
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) - T ) = ( ( ( Q ` i ) + T ) - T ) ) |
| 226 |
50
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
| 227 |
98
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. CC ) |
| 228 |
226 227
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) - T ) = ( Q ` i ) ) |
| 229 |
225 228
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( S ` i ) - T ) ) |
| 230 |
229
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( ( S ` i ) - T ) ) |
| 231 |
123
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR ) |
| 232 |
216
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 233 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> T e. RR ) |
| 234 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 235 |
208
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR* ) |
| 236 |
210
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
| 237 |
235 236 212
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) <-> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
| 238 |
234 237
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) |
| 239 |
238
|
simp2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) < x ) |
| 240 |
231 232 233 239
|
ltsub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( S ` i ) - T ) < ( x - T ) ) |
| 241 |
230 240
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( x - T ) ) |
| 242 |
124
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
| 243 |
238
|
simp3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x < ( S ` ( i + 1 ) ) ) |
| 244 |
232 242 233 243
|
ltsub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) < ( ( S ` ( i + 1 ) ) - T ) ) |
| 245 |
112
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) |
| 246 |
53
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 247 |
246 227
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 248 |
245 247
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 249 |
248
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 250 |
244 249
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
| 251 |
219 220 224 241 250
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 252 |
221
|
recnd |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 253 |
222
|
recnd |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> T e. CC ) |
| 254 |
252 253
|
npcand |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( x - T ) + T ) = x ) |
| 255 |
254
|
eqcomd |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x = ( ( x - T ) + T ) ) |
| 256 |
255
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x = ( ( x - T ) + T ) ) |
| 257 |
|
oveq1 |
|- ( z = ( x - T ) -> ( z + T ) = ( ( x - T ) + T ) ) |
| 258 |
257
|
eqeq2d |
|- ( z = ( x - T ) -> ( x = ( z + T ) <-> x = ( ( x - T ) + T ) ) ) |
| 259 |
258
|
rspcev |
|- ( ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( ( x - T ) + T ) ) -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
| 260 |
251 256 259
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
| 261 |
218 260 169
|
sylanbrc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) |
| 262 |
215 261
|
impbida |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } <-> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) |
| 263 |
262
|
eqrdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 264 |
263
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) = ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) |
| 265 |
9
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
| 266 |
|
ioossre |
|- ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR |
| 267 |
266
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR ) |
| 268 |
265 267
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
| 269 |
264 268
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
| 270 |
263
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) = ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 271 |
168 269 270
|
3eltr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 272 |
57 135
|
sseqtrrid |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
| 273 |
272
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
| 274 |
|
eqid |
|- { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |
| 275 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
| 276 |
156
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
| 277 |
158
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
| 278 |
160
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 279 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 280 |
163 183
|
sselid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 281 |
276 277 278 279 280
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( A [,] B ) ) |
| 282 |
|
eleq1 |
|- ( x = z -> ( x e. ( A [,] B ) <-> z e. ( A [,] B ) ) ) |
| 283 |
282
|
anbi2d |
|- ( x = z -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ z e. ( A [,] B ) ) ) ) |
| 284 |
|
oveq1 |
|- ( x = z -> ( x + T ) = ( z + T ) ) |
| 285 |
284
|
fveq2d |
|- ( x = z -> ( F ` ( x + T ) ) = ( F ` ( z + T ) ) ) |
| 286 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 287 |
285 286
|
eqeq12d |
|- ( x = z -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( z + T ) ) = ( F ` z ) ) ) |
| 288 |
283 287
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) ) ) |
| 289 |
288 7
|
chvarvv |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
| 290 |
275 281 289
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
| 291 |
138 126 273 227 274 154 290 12
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 292 |
112
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) |
| 293 |
269 292
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` ( i + 1 ) ) ) ) |
| 294 |
291 293
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` ( i + 1 ) ) ) ) |
| 295 |
138 126 273 227 274 154 290 11
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` i ) + T ) ) ) |
| 296 |
102
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) |
| 297 |
269 296
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` i ) + T ) ) = ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` i ) ) ) |
| 298 |
295 297
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` i ) ) ) |
| 299 |
123 124 271 294 298
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
| 300 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> F : RR --> CC ) |
| 301 |
123
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR ) |
| 302 |
124
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
| 303 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
| 304 |
|
eliccre |
|- ( ( ( S ` i ) e. RR /\ ( S ` ( i + 1 ) ) e. RR /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 305 |
301 302 303 304
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 306 |
300 305
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 307 |
123 124 299 306
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
| 308 |
26 31 97 113 122 307
|
itgspltprt |
|- ( ph -> S. ( ( S ` 0 ) [,] ( S ` M ) ) ( F ` x ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 309 |
|
iftrue |
|- ( x = ( S ` i ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = R ) |
| 310 |
309
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = R ) |
| 311 |
|
iftrue |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = R ) |
| 312 |
|
iftrue |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = R ) |
| 313 |
311 312
|
eqtr4d |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 314 |
313
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ x = ( Q ` i ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 315 |
|
iffalse |
|- ( -. x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 316 |
315
|
adantr |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 317 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
| 318 |
317
|
adantl |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
| 319 |
|
iffalse |
|- ( -. x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 320 |
319
|
adantr |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 321 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
| 322 |
321
|
adantl |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
| 323 |
320 322
|
eqtr2d |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> L = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 324 |
316 318 323
|
3eqtrd |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 325 |
324
|
adantll |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 326 |
315
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 327 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
| 328 |
327
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
| 329 |
319
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 330 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 331 |
330
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 332 |
184
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
| 333 |
186
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 334 |
65
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
| 335 |
50
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) e. RR ) |
| 336 |
65
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x e. RR ) |
| 337 |
184
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) e. RR* ) |
| 338 |
186
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 339 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 340 |
|
iccgelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ x ) |
| 341 |
337 338 339 340
|
syl3anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) <_ x ) |
| 342 |
|
neqne |
|- ( -. x = ( Q ` i ) -> x =/= ( Q ` i ) ) |
| 343 |
342
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x =/= ( Q ` i ) ) |
| 344 |
335 336 341 343
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) < x ) |
| 345 |
344
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < x ) |
| 346 |
53
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 347 |
184
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 348 |
186
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 349 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 350 |
|
iccleub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
| 351 |
347 348 349 350
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
| 352 |
351
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
| 353 |
|
neqne |
|- ( -. x = ( Q ` ( i + 1 ) ) -> x =/= ( Q ` ( i + 1 ) ) ) |
| 354 |
353
|
necomd |
|- ( -. x = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
| 355 |
354
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
| 356 |
334 346 352 355
|
leneltd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
| 357 |
332 333 334 345 356
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 358 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 359 |
357 358
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 360 |
329 331 359
|
3eqtrrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( F ` x ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 361 |
326 328 360
|
3eqtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 362 |
325 361
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 363 |
314 362
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 364 |
363
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
| 365 |
13 364
|
eqtrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
| 366 |
|
eqeq1 |
|- ( x = w -> ( x = ( Q ` i ) <-> w = ( Q ` i ) ) ) |
| 367 |
|
eqeq1 |
|- ( x = w -> ( x = ( Q ` ( i + 1 ) ) <-> w = ( Q ` ( i + 1 ) ) ) ) |
| 368 |
|
fveq2 |
|- ( x = w -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) |
| 369 |
367 368
|
ifbieq2d |
|- ( x = w -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) |
| 370 |
366 369
|
ifbieq2d |
|- ( x = w -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) |
| 371 |
370
|
cbvmptv |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) |
| 372 |
365 371
|
eqtrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
| 373 |
372
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
| 374 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> w = ( x - T ) ) |
| 375 |
|
oveq1 |
|- ( x = ( S ` i ) -> ( x - T ) = ( ( S ` i ) - T ) ) |
| 376 |
375
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> ( x - T ) = ( ( S ` i ) - T ) ) |
| 377 |
229
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) - T ) = ( Q ` i ) ) |
| 378 |
377
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> ( ( S ` i ) - T ) = ( Q ` i ) ) |
| 379 |
374 376 378
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> w = ( Q ` i ) ) |
| 380 |
379
|
iftrued |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = R ) |
| 381 |
375
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( x - T ) = ( ( S ` i ) - T ) ) |
| 382 |
50 53 40
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
| 383 |
|
lbicc2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 384 |
184 186 382 383
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 385 |
377 384
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 386 |
385
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( ( S ` i ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 387 |
381 386
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 388 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) C_ CC |
| 389 |
388 11
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. CC ) |
| 390 |
389
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> R e. CC ) |
| 391 |
373 380 387 390
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( G ` ( x - T ) ) = R ) |
| 392 |
310 391
|
eqtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
| 393 |
392
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
| 394 |
|
iffalse |
|- ( -. x = ( S ` i ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 395 |
394
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 396 |
372
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
| 397 |
|
eqeq1 |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> ( w = ( Q ` i ) <-> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) ) ) |
| 398 |
|
eqeq1 |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> ( w = ( Q ` ( i + 1 ) ) <-> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) ) |
| 399 |
|
fveq2 |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) |
| 400 |
398 399
|
ifbieq2d |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) = if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) |
| 401 |
397 400
|
ifbieq2d |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) ) |
| 402 |
401
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) ) |
| 403 |
|
eqeq1 |
|- ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) -> ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) <-> ( Q ` ( i + 1 ) ) = ( Q ` i ) ) ) |
| 404 |
|
iftrue |
|- ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) = L ) |
| 405 |
403 404
|
ifbieq2d |
|- ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) = if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) ) |
| 406 |
248 405
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) = if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) ) |
| 407 |
406
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) = if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) ) |
| 408 |
50 40
|
gtned |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) =/= ( Q ` i ) ) |
| 409 |
408
|
neneqd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. ( Q ` ( i + 1 ) ) = ( Q ` i ) ) |
| 410 |
409
|
iffalsed |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) = L ) |
| 411 |
410
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) = L ) |
| 412 |
402 407 411
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = L ) |
| 413 |
412
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = L ) |
| 414 |
|
ubicc2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 415 |
184 186 382 414
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 416 |
248 415
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` ( i + 1 ) ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 417 |
416
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> ( ( S ` ( i + 1 ) ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 418 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) C_ CC |
| 419 |
418 12
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. CC ) |
| 420 |
419
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> L e. CC ) |
| 421 |
396 413 417 420
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> ( G ` ( ( S ` ( i + 1 ) ) - T ) ) = L ) |
| 422 |
|
oveq1 |
|- ( x = ( S ` ( i + 1 ) ) -> ( x - T ) = ( ( S ` ( i + 1 ) ) - T ) ) |
| 423 |
422
|
fveq2d |
|- ( x = ( S ` ( i + 1 ) ) -> ( G ` ( x - T ) ) = ( G ` ( ( S ` ( i + 1 ) ) - T ) ) ) |
| 424 |
423
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( G ` ( ( S ` ( i + 1 ) ) - T ) ) ) |
| 425 |
|
iftrue |
|- ( x = ( S ` ( i + 1 ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
| 426 |
425
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
| 427 |
421 424 426
|
3eqtr4rd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
| 428 |
427
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
| 429 |
|
iffalse |
|- ( -. x = ( S ` ( i + 1 ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
| 430 |
429
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
| 431 |
372
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
| 432 |
431
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
| 433 |
|
eqeq1 |
|- ( w = ( x - T ) -> ( w = ( Q ` i ) <-> ( x - T ) = ( Q ` i ) ) ) |
| 434 |
|
eqeq1 |
|- ( w = ( x - T ) -> ( w = ( Q ` ( i + 1 ) ) <-> ( x - T ) = ( Q ` ( i + 1 ) ) ) ) |
| 435 |
|
fveq2 |
|- ( w = ( x - T ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 436 |
434 435
|
ifbieq2d |
|- ( w = ( x - T ) -> if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) = if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
| 437 |
433 436
|
ifbieq2d |
|- ( w = ( x - T ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) ) |
| 438 |
437
|
adantl |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) ) |
| 439 |
305
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 440 |
227
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> T e. CC ) |
| 441 |
439 440
|
npcand |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x - T ) + T ) = x ) |
| 442 |
441
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x = ( ( x - T ) + T ) ) |
| 443 |
442
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> x = ( ( x - T ) + T ) ) |
| 444 |
|
oveq1 |
|- ( ( x - T ) = ( Q ` i ) -> ( ( x - T ) + T ) = ( ( Q ` i ) + T ) ) |
| 445 |
444
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> ( ( x - T ) + T ) = ( ( Q ` i ) + T ) ) |
| 446 |
296
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) |
| 447 |
443 445 446
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> x = ( S ` i ) ) |
| 448 |
447
|
stoic1a |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> -. ( x - T ) = ( Q ` i ) ) |
| 449 |
448
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) = if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
| 450 |
449
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) = if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
| 451 |
442
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> x = ( ( x - T ) + T ) ) |
| 452 |
|
oveq1 |
|- ( ( x - T ) = ( Q ` ( i + 1 ) ) -> ( ( x - T ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 453 |
452
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> ( ( x - T ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 454 |
292
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) |
| 455 |
451 453 454
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> x = ( S ` ( i + 1 ) ) ) |
| 456 |
455
|
stoic1a |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> -. ( x - T ) = ( Q ` ( i + 1 ) ) ) |
| 457 |
456
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 458 |
457
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 459 |
458
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 460 |
438 450 459
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 461 |
50
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 462 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 463 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> T e. RR ) |
| 464 |
305 463
|
resubcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. RR ) |
| 465 |
229
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( ( S ` i ) - T ) ) |
| 466 |
208
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR* ) |
| 467 |
210
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
| 468 |
|
iccgelb |
|- ( ( ( S ` i ) e. RR* /\ ( S ` ( i + 1 ) ) e. RR* /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) <_ x ) |
| 469 |
466 467 303 468
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) <_ x ) |
| 470 |
301 305 463 469
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( S ` i ) - T ) <_ ( x - T ) ) |
| 471 |
465 470
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ ( x - T ) ) |
| 472 |
|
iccleub |
|- ( ( ( S ` i ) e. RR* /\ ( S ` ( i + 1 ) ) e. RR* /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x <_ ( S ` ( i + 1 ) ) ) |
| 473 |
466 467 303 472
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x <_ ( S ` ( i + 1 ) ) ) |
| 474 |
305 302 463 473
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) <_ ( ( S ` ( i + 1 ) ) - T ) ) |
| 475 |
248
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 476 |
474 475
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) <_ ( Q ` ( i + 1 ) ) ) |
| 477 |
461 462 464 471 476
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 478 |
477
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 479 |
138 273
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 480 |
479
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 481 |
184
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
| 482 |
186
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 483 |
305
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x e. RR ) |
| 484 |
98
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> T e. RR ) |
| 485 |
483 484
|
resubcld |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. RR ) |
| 486 |
50
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( Q ` i ) e. RR ) |
| 487 |
464
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( x - T ) e. RR ) |
| 488 |
471
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( Q ` i ) <_ ( x - T ) ) |
| 489 |
448
|
neqned |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( x - T ) =/= ( Q ` i ) ) |
| 490 |
486 487 488 489
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( Q ` i ) < ( x - T ) ) |
| 491 |
490
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` i ) < ( x - T ) ) |
| 492 |
464
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. RR ) |
| 493 |
53
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 494 |
476
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) <_ ( Q ` ( i + 1 ) ) ) |
| 495 |
|
eqcom |
|- ( ( x - T ) = ( Q ` ( i + 1 ) ) <-> ( Q ` ( i + 1 ) ) = ( x - T ) ) |
| 496 |
455
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x - T ) = ( Q ` ( i + 1 ) ) -> x = ( S ` ( i + 1 ) ) ) ) |
| 497 |
495 496
|
biimtrrid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( Q ` ( i + 1 ) ) = ( x - T ) -> x = ( S ` ( i + 1 ) ) ) ) |
| 498 |
497
|
con3dimp |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> -. ( Q ` ( i + 1 ) ) = ( x - T ) ) |
| 499 |
498
|
neqned |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= ( x - T ) ) |
| 500 |
492 493 494 499
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
| 501 |
500
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
| 502 |
481 482 485 491 501
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 503 |
480 502
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) e. CC ) |
| 504 |
432 460 478 503
|
fvmptd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 505 |
|
fvres |
|- ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
| 506 |
502 505
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
| 507 |
504 506
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
| 508 |
466
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` i ) e. RR* ) |
| 509 |
467
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
| 510 |
123
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( S ` i ) e. RR ) |
| 511 |
305
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> x e. RR ) |
| 512 |
469
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( S ` i ) <_ x ) |
| 513 |
|
neqne |
|- ( -. x = ( S ` i ) -> x =/= ( S ` i ) ) |
| 514 |
513
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> x =/= ( S ` i ) ) |
| 515 |
510 511 512 514
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( S ` i ) < x ) |
| 516 |
515
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` i ) < x ) |
| 517 |
302
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
| 518 |
473
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x <_ ( S ` ( i + 1 ) ) ) |
| 519 |
|
neqne |
|- ( -. x = ( S ` ( i + 1 ) ) -> x =/= ( S ` ( i + 1 ) ) ) |
| 520 |
519
|
necomd |
|- ( -. x = ( S ` ( i + 1 ) ) -> ( S ` ( i + 1 ) ) =/= x ) |
| 521 |
520
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` ( i + 1 ) ) =/= x ) |
| 522 |
483 517 518 521
|
leneltd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x < ( S ` ( i + 1 ) ) ) |
| 523 |
508 509 483 516 522
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 524 |
|
fvres |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 525 |
523 524
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 526 |
441
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) |
| 527 |
526
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( F ` x ) = ( F ` ( ( x - T ) + T ) ) ) |
| 528 |
527
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F ` x ) = ( F ` ( ( x - T ) + T ) ) ) |
| 529 |
439 440
|
subcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. CC ) |
| 530 |
|
elex |
|- ( ( x - T ) e. CC -> ( x - T ) e. _V ) |
| 531 |
529 530
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. _V ) |
| 532 |
531
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. _V ) |
| 533 |
|
simp-4l |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ph ) |
| 534 |
156
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
| 535 |
158
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
| 536 |
160
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 537 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 538 |
534 535 536 537
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 539 |
538
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 540 |
539 477
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
| 541 |
540
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
| 542 |
533 541
|
jca |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) |
| 543 |
|
eleq1 |
|- ( y = ( x - T ) -> ( y e. ( A [,] B ) <-> ( x - T ) e. ( A [,] B ) ) ) |
| 544 |
543
|
anbi2d |
|- ( y = ( x - T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) ) |
| 545 |
|
oveq1 |
|- ( y = ( x - T ) -> ( y + T ) = ( ( x - T ) + T ) ) |
| 546 |
545
|
fveq2d |
|- ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) |
| 547 |
|
fveq2 |
|- ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) |
| 548 |
546 547
|
eqeq12d |
|- ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
| 549 |
544 548
|
imbi12d |
|- ( y = ( x - T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) |
| 550 |
|
eleq1 |
|- ( x = y -> ( x e. ( A [,] B ) <-> y e. ( A [,] B ) ) ) |
| 551 |
550
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ y e. ( A [,] B ) ) ) ) |
| 552 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
| 553 |
552
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
| 554 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 555 |
553 554
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
| 556 |
551 555
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
| 557 |
556 7
|
chvarvv |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
| 558 |
549 557
|
vtoclg |
|- ( ( x - T ) e. _V -> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
| 559 |
532 542 558
|
sylc |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) |
| 560 |
525 528 559
|
3eqtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` ( x - T ) ) ) |
| 561 |
507 560
|
eqtr4d |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
| 562 |
430 561
|
eqtr4d |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
| 563 |
428 562
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
| 564 |
395 563
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
| 565 |
393 564
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
| 566 |
310 390
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
| 567 |
566
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
| 568 |
426 420
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
| 569 |
568
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
| 570 |
265 267
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) : ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) --> CC ) |
| 571 |
570
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) : ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) --> CC ) |
| 572 |
571 523
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) e. CC ) |
| 573 |
430 572
|
eqeltrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
| 574 |
569 573
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
| 575 |
395 574
|
eqeltrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
| 576 |
567 575
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
| 577 |
|
eqid |
|- ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 578 |
577
|
fvmpt2 |
|- ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) /\ if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 579 |
303 576 578
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 580 |
|
nfv |
|- F/ x ( ph /\ i e. ( 0 ..^ M ) ) |
| 581 |
|
eqid |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 582 |
580 581 50 53 10 12 11
|
cncfiooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 583 |
365 582
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 584 |
|
cncff |
|- ( G e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
| 585 |
583 584
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
| 586 |
585
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
| 587 |
586 477
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( G ` ( x - T ) ) e. CC ) |
| 588 |
14
|
fvmpt2 |
|- ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) /\ ( G ` ( x - T ) ) e. CC ) -> ( H ` x ) = ( G ` ( x - T ) ) ) |
| 589 |
303 587 588
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( H ` x ) = ( G ` ( x - T ) ) ) |
| 590 |
565 579 589
|
3eqtr4rd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( H ` x ) = ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) ) |
| 591 |
590
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x ) |
| 592 |
|
ioossicc |
|- ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |
| 593 |
592
|
sseli |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
| 594 |
593
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
| 595 |
593 576
|
sylan2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
| 596 |
594 595 578
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 597 |
231 239
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x =/= ( S ` i ) ) |
| 598 |
597
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> -. x = ( S ` i ) ) |
| 599 |
598
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 600 |
232 243
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x =/= ( S ` ( i + 1 ) ) ) |
| 601 |
600
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> -. x = ( S ` ( i + 1 ) ) ) |
| 602 |
601
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
| 603 |
524
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 604 |
602 603
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( F ` x ) ) |
| 605 |
596 599 604
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = ( F ` x ) ) |
| 606 |
605
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x = S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 607 |
579 576
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) e. CC ) |
| 608 |
123 124 607
|
itgioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x ) |
| 609 |
123 124 306
|
itgioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 610 |
606 608 609
|
3eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 611 |
591 610
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x ) |
| 612 |
102 112
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) = ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 613 |
612
|
itgeq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x = S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( H ` x ) _d x ) |
| 614 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 615 |
612
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
| 616 |
615
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
| 617 |
614 616
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
| 618 |
585
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
| 619 |
50
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) e. RR ) |
| 620 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 621 |
100
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR ) |
| 622 |
111
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
| 623 |
|
eliccre |
|- ( ( ( ( Q ` i ) + T ) e. RR /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
| 624 |
621 622 614 623
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
| 625 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) |
| 626 |
624 625
|
resubcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) |
| 627 |
228
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
| 628 |
627
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
| 629 |
621
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR* ) |
| 630 |
622
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) |
| 631 |
|
iccgelb |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) <_ x ) |
| 632 |
629 630 614 631
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) <_ x ) |
| 633 |
621 624 625 632
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) - T ) <_ ( x - T ) ) |
| 634 |
628 633
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) <_ ( x - T ) ) |
| 635 |
|
iccleub |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x <_ ( ( Q ` ( i + 1 ) ) + T ) ) |
| 636 |
629 630 614 635
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x <_ ( ( Q ` ( i + 1 ) ) + T ) ) |
| 637 |
624 622 625 636
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) |
| 638 |
247
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 639 |
637 638
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ ( Q ` ( i + 1 ) ) ) |
| 640 |
619 620 626 634 639
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 641 |
618 640
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( G ` ( x - T ) ) e. CC ) |
| 642 |
617 641 588
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( H ` x ) = ( G ` ( x - T ) ) ) |
| 643 |
|
eqidd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) = ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ) |
| 644 |
|
oveq1 |
|- ( y = x -> ( y - T ) = ( x - T ) ) |
| 645 |
644
|
fveq2d |
|- ( y = x -> ( G ` ( y - T ) ) = ( G ` ( x - T ) ) ) |
| 646 |
645
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) /\ y = x ) -> ( G ` ( y - T ) ) = ( G ` ( x - T ) ) ) |
| 647 |
643 646 614 641
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) = ( G ` ( x - T ) ) ) |
| 648 |
642 647
|
eqtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( H ` x ) = ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) ) |
| 649 |
648
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( H ` x ) _d x = S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) _d x ) |
| 650 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR+ ) |
| 651 |
645
|
cbvmptv |
|- ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) = ( x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( x - T ) ) ) |
| 652 |
50 53 382 583 650 651
|
itgiccshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x ) |
| 653 |
613 649 652
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x ) |
| 654 |
135
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = RR ) |
| 655 |
64 654
|
sseqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ dom F ) |
| 656 |
50 53 138 10 655 11 12 13
|
itgioocnicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G e. L^1 /\ S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) ) |
| 657 |
656
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 658 |
611 653 657
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 659 |
658
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
| 660 |
93 308 659
|
3eqtrrd |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x ) |
| 661 |
25 68 660
|
3eqtrrd |
|- ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |