| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem107.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem107.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem107.t |
|- T = ( B - A ) |
| 4 |
|
fourierdlem107.x |
|- ( ph -> X e. RR+ ) |
| 5 |
|
fourierdlem107.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 6 |
|
fourierdlem107.m |
|- ( ph -> M e. NN ) |
| 7 |
|
fourierdlem107.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 8 |
|
fourierdlem107.f |
|- ( ph -> F : RR --> CC ) |
| 9 |
|
fourierdlem107.fper |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 10 |
|
fourierdlem107.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 11 |
|
fourierdlem107.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 12 |
|
fourierdlem107.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 13 |
|
fourierdlem107.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 14 |
|
fourierdlem107.h |
|- H = ( { ( A - X ) , A } u. { y e. ( ( A - X ) [,] A ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) |
| 15 |
|
fourierdlem107.n |
|- N = ( ( # ` H ) - 1 ) |
| 16 |
|
fourierdlem107.s |
|- S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) |
| 17 |
|
fourierdlem107.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 18 |
|
fourierdlem107.z |
|- Z = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) |
| 19 |
|
fourierdlem107.i |
|- I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } , RR , < ) ) |
| 20 |
3
|
oveq2i |
|- ( ( A - X ) + T ) = ( ( A - X ) + ( B - A ) ) |
| 21 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 22 |
4
|
rpred |
|- ( ph -> X e. RR ) |
| 23 |
22
|
recnd |
|- ( ph -> X e. CC ) |
| 24 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 25 |
21 23 24 21
|
subadd4b |
|- ( ph -> ( ( A - X ) + ( B - A ) ) = ( ( A - A ) + ( B - X ) ) ) |
| 26 |
20 25
|
eqtrid |
|- ( ph -> ( ( A - X ) + T ) = ( ( A - A ) + ( B - X ) ) ) |
| 27 |
21
|
subidd |
|- ( ph -> ( A - A ) = 0 ) |
| 28 |
27
|
oveq1d |
|- ( ph -> ( ( A - A ) + ( B - X ) ) = ( 0 + ( B - X ) ) ) |
| 29 |
2 22
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ph -> ( B - X ) e. CC ) |
| 31 |
30
|
addlidd |
|- ( ph -> ( 0 + ( B - X ) ) = ( B - X ) ) |
| 32 |
26 28 31
|
3eqtrd |
|- ( ph -> ( ( A - X ) + T ) = ( B - X ) ) |
| 33 |
3
|
oveq2i |
|- ( A + T ) = ( A + ( B - A ) ) |
| 34 |
21 24
|
pncan3d |
|- ( ph -> ( A + ( B - A ) ) = B ) |
| 35 |
33 34
|
eqtrid |
|- ( ph -> ( A + T ) = B ) |
| 36 |
32 35
|
oveq12d |
|- ( ph -> ( ( ( A - X ) + T ) [,] ( A + T ) ) = ( ( B - X ) [,] B ) ) |
| 37 |
36
|
eqcomd |
|- ( ph -> ( ( B - X ) [,] B ) = ( ( ( A - X ) + T ) [,] ( A + T ) ) ) |
| 38 |
37
|
itgeq1d |
|- ( ph -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = S. ( ( ( A - X ) + T ) [,] ( A + T ) ) ( F ` x ) _d x ) |
| 39 |
1 22
|
resubcld |
|- ( ph -> ( A - X ) e. RR ) |
| 40 |
|
fveq2 |
|- ( i = j -> ( p ` i ) = ( p ` j ) ) |
| 41 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
| 42 |
41
|
fveq2d |
|- ( i = j -> ( p ` ( i + 1 ) ) = ( p ` ( j + 1 ) ) ) |
| 43 |
40 42
|
breq12d |
|- ( i = j -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( p ` j ) < ( p ` ( j + 1 ) ) ) ) |
| 44 |
43
|
cbvralvw |
|- ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) |
| 45 |
44
|
a1i |
|- ( m e. NN -> ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) |
| 46 |
45
|
anbi2d |
|- ( m e. NN -> ( ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) ) |
| 47 |
46
|
rabbidv |
|- ( m e. NN -> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
| 48 |
47
|
mpteq2ia |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
| 49 |
13 48
|
eqtri |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
| 50 |
1 4
|
ltsubrpd |
|- ( ph -> ( A - X ) < A ) |
| 51 |
3 5 6 7 39 1 50 13 14 15 16
|
fourierdlem54 |
|- ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , H ) ) ) |
| 52 |
51
|
simpld |
|- ( ph -> ( N e. NN /\ S e. ( O ` N ) ) ) |
| 53 |
52
|
simpld |
|- ( ph -> N e. NN ) |
| 54 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 55 |
3 54
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 56 |
52
|
simprd |
|- ( ph -> S e. ( O ` N ) ) |
| 57 |
39
|
adantr |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> ( A - X ) e. RR ) |
| 58 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> A e. RR ) |
| 59 |
|
simpr |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> x e. ( ( A - X ) [,] A ) ) |
| 60 |
|
eliccre |
|- ( ( ( A - X ) e. RR /\ A e. RR /\ x e. ( ( A - X ) [,] A ) ) -> x e. RR ) |
| 61 |
57 58 59 60
|
syl3anc |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> x e. RR ) |
| 62 |
61 9
|
syldan |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 63 |
|
fveq2 |
|- ( i = j -> ( S ` i ) = ( S ` j ) ) |
| 64 |
63
|
oveq1d |
|- ( i = j -> ( ( S ` i ) + T ) = ( ( S ` j ) + T ) ) |
| 65 |
64
|
cbvmptv |
|- ( i e. ( 0 ... N ) |-> ( ( S ` i ) + T ) ) = ( j e. ( 0 ... N ) |-> ( ( S ` j ) + T ) ) |
| 66 |
|
eqid |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( ( A - X ) + T ) /\ ( p ` m ) = ( A + T ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( ( A - X ) + T ) /\ ( p ` m ) = ( A + T ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
| 67 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> M e. NN ) |
| 68 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> Q e. ( P ` M ) ) |
| 69 |
8
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> F : RR --> CC ) |
| 70 |
9
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 71 |
10
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 72 |
39
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) e. RR ) |
| 73 |
72
|
rexrd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) e. RR* ) |
| 74 |
|
pnfxr |
|- +oo e. RR* |
| 75 |
74
|
a1i |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> +oo e. RR* ) |
| 76 |
1
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> A e. RR ) |
| 77 |
50
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) < A ) |
| 78 |
1
|
ltpnfd |
|- ( ph -> A < +oo ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> A < +oo ) |
| 80 |
73 75 76 77 79
|
eliood |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> A e. ( ( A - X ) (,) +oo ) ) |
| 81 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> j e. ( 0 ..^ N ) ) |
| 82 |
|
eqid |
|- ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) |
| 83 |
|
eqid |
|- ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) = ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) |
| 84 |
|
eqid |
|- ( y e. ( ( ( Z ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) = ( y e. ( ( ( Z ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) |
| 85 |
5 3 67 68 69 70 71 72 80 13 14 15 16 17 18 81 82 83 84 19
|
fourierdlem90 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
| 86 |
11
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 87 |
|
eqid |
|- ( i e. ( 0 ..^ M ) |-> R ) = ( i e. ( 0 ..^ M ) |-> R ) |
| 88 |
5 3 67 68 69 70 71 86 72 80 13 14 15 16 17 18 81 82 19 87
|
fourierdlem89 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( Z ` ( E ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` j ) ) ) , ( ( i e. ( 0 ..^ M ) |-> R ) ` ( I ` ( S ` j ) ) ) , ( F ` ( Z ` ( E ` ( S ` j ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) |
| 89 |
12
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 90 |
|
eqid |
|- ( i e. ( 0 ..^ M ) |-> L ) = ( i e. ( 0 ..^ M ) |-> L ) |
| 91 |
5 3 67 68 69 70 71 89 72 80 13 14 15 16 17 18 81 82 19 90
|
fourierdlem91 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( E ` ( S ` ( j + 1 ) ) ) = ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) , ( ( i e. ( 0 ..^ M ) |-> L ) ` ( I ` ( S ` j ) ) ) , ( F ` ( E ` ( S ` ( j + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
| 92 |
39 1 49 53 55 56 62 65 66 8 85 88 91
|
fourierdlem92 |
|- ( ph -> S. ( ( ( A - X ) + T ) [,] ( A + T ) ) ( F ` x ) _d x = S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) |
| 93 |
38 92
|
eqtrd |
|- ( ph -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) |
| 94 |
8
|
adantr |
|- ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> F : RR --> CC ) |
| 95 |
29
|
adantr |
|- ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> ( B - X ) e. RR ) |
| 96 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> B e. RR ) |
| 97 |
|
simpr |
|- ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> x e. ( ( B - X ) [,] B ) ) |
| 98 |
|
eliccre |
|- ( ( ( B - X ) e. RR /\ B e. RR /\ x e. ( ( B - X ) [,] B ) ) -> x e. RR ) |
| 99 |
95 96 97 98
|
syl3anc |
|- ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> x e. RR ) |
| 100 |
94 99
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> ( F ` x ) e. CC ) |
| 101 |
29
|
rexrd |
|- ( ph -> ( B - X ) e. RR* ) |
| 102 |
74
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 103 |
2 4
|
ltsubrpd |
|- ( ph -> ( B - X ) < B ) |
| 104 |
2
|
ltpnfd |
|- ( ph -> B < +oo ) |
| 105 |
101 102 2 103 104
|
eliood |
|- ( ph -> B e. ( ( B - X ) (,) +oo ) ) |
| 106 |
5 3 6 7 8 9 10 11 12 29 105
|
fourierdlem105 |
|- ( ph -> ( x e. ( ( B - X ) [,] B ) |-> ( F ` x ) ) e. L^1 ) |
| 107 |
100 106
|
itgcl |
|- ( ph -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x e. CC ) |
| 108 |
93 107
|
eqeltrrd |
|- ( ph -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x e. CC ) |
| 109 |
108
|
subidd |
|- ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = 0 ) |
| 110 |
109
|
eqcomd |
|- ( ph -> 0 = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) |
| 111 |
110
|
adantr |
|- ( ( ph /\ T < X ) -> 0 = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) |
| 112 |
39
|
adantr |
|- ( ( ph /\ T < X ) -> ( A - X ) e. RR ) |
| 113 |
1
|
adantr |
|- ( ( ph /\ T < X ) -> A e. RR ) |
| 114 |
29
|
adantr |
|- ( ( ph /\ T < X ) -> ( B - X ) e. RR ) |
| 115 |
5 6 7
|
fourierdlem11 |
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |
| 116 |
115
|
simp3d |
|- ( ph -> A < B ) |
| 117 |
1 2 116
|
ltled |
|- ( ph -> A <_ B ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ T < X ) -> A <_ B ) |
| 119 |
1 2 22
|
lesub1d |
|- ( ph -> ( A <_ B <-> ( A - X ) <_ ( B - X ) ) ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ T < X ) -> ( A <_ B <-> ( A - X ) <_ ( B - X ) ) ) |
| 121 |
118 120
|
mpbid |
|- ( ( ph /\ T < X ) -> ( A - X ) <_ ( B - X ) ) |
| 122 |
2
|
adantr |
|- ( ( ph /\ T < X ) -> B e. RR ) |
| 123 |
22
|
adantr |
|- ( ( ph /\ T < X ) -> X e. RR ) |
| 124 |
|
simpr |
|- ( ( ph /\ T < X ) -> T < X ) |
| 125 |
3 124
|
eqbrtrrid |
|- ( ( ph /\ T < X ) -> ( B - A ) < X ) |
| 126 |
122 113 123 125
|
ltsub23d |
|- ( ( ph /\ T < X ) -> ( B - X ) < A ) |
| 127 |
114 113 126
|
ltled |
|- ( ( ph /\ T < X ) -> ( B - X ) <_ A ) |
| 128 |
112 113 114 121 127
|
eliccd |
|- ( ( ph /\ T < X ) -> ( B - X ) e. ( ( A - X ) [,] A ) ) |
| 129 |
8
|
adantr |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> F : RR --> CC ) |
| 130 |
129 61
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> ( F ` x ) e. CC ) |
| 131 |
130
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ x e. ( ( A - X ) [,] A ) ) -> ( F ` x ) e. CC ) |
| 132 |
39
|
rexrd |
|- ( ph -> ( A - X ) e. RR* ) |
| 133 |
1 2 22 116
|
ltsub1dd |
|- ( ph -> ( A - X ) < ( B - X ) ) |
| 134 |
29
|
ltpnfd |
|- ( ph -> ( B - X ) < +oo ) |
| 135 |
132 102 29 133 134
|
eliood |
|- ( ph -> ( B - X ) e. ( ( A - X ) (,) +oo ) ) |
| 136 |
5 3 6 7 8 9 10 11 12 39 135
|
fourierdlem105 |
|- ( ph -> ( x e. ( ( A - X ) [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) |
| 137 |
136
|
adantr |
|- ( ( ph /\ T < X ) -> ( x e. ( ( A - X ) [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) |
| 138 |
6
|
adantr |
|- ( ( ph /\ T < X ) -> M e. NN ) |
| 139 |
7
|
adantr |
|- ( ( ph /\ T < X ) -> Q e. ( P ` M ) ) |
| 140 |
8
|
adantr |
|- ( ( ph /\ T < X ) -> F : RR --> CC ) |
| 141 |
9
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 142 |
10
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 143 |
11
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 144 |
12
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 145 |
101
|
adantr |
|- ( ( ph /\ T < X ) -> ( B - X ) e. RR* ) |
| 146 |
74
|
a1i |
|- ( ( ph /\ T < X ) -> +oo e. RR* ) |
| 147 |
113
|
ltpnfd |
|- ( ( ph /\ T < X ) -> A < +oo ) |
| 148 |
145 146 113 126 147
|
eliood |
|- ( ( ph /\ T < X ) -> A e. ( ( B - X ) (,) +oo ) ) |
| 149 |
5 3 138 139 140 141 142 143 144 114 148
|
fourierdlem105 |
|- ( ( ph /\ T < X ) -> ( x e. ( ( B - X ) [,] A ) |-> ( F ` x ) ) e. L^1 ) |
| 150 |
112 113 128 131 137 149
|
itgspliticc |
|- ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) |
| 151 |
150
|
oveq1d |
|- ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) |
| 152 |
8
|
adantr |
|- ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> F : RR --> CC ) |
| 153 |
39
|
adantr |
|- ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) e. RR ) |
| 154 |
29
|
adantr |
|- ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( B - X ) e. RR ) |
| 155 |
|
simpr |
|- ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> x e. ( ( A - X ) [,] ( B - X ) ) ) |
| 156 |
|
eliccre |
|- ( ( ( A - X ) e. RR /\ ( B - X ) e. RR /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> x e. RR ) |
| 157 |
153 154 155 156
|
syl3anc |
|- ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> x e. RR ) |
| 158 |
152 157
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( F ` x ) e. CC ) |
| 159 |
158 136
|
itgcl |
|- ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x e. CC ) |
| 160 |
159
|
adantr |
|- ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x e. CC ) |
| 161 |
8
|
adantr |
|- ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> F : RR --> CC ) |
| 162 |
29
|
adantr |
|- ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> ( B - X ) e. RR ) |
| 163 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> A e. RR ) |
| 164 |
|
simpr |
|- ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> x e. ( ( B - X ) [,] A ) ) |
| 165 |
|
eliccre |
|- ( ( ( B - X ) e. RR /\ A e. RR /\ x e. ( ( B - X ) [,] A ) ) -> x e. RR ) |
| 166 |
162 163 164 165
|
syl3anc |
|- ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> x e. RR ) |
| 167 |
161 166
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> ( F ` x ) e. CC ) |
| 168 |
167
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ x e. ( ( B - X ) [,] A ) ) -> ( F ` x ) e. CC ) |
| 169 |
168 149
|
itgcl |
|- ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] A ) ( F ` x ) _d x e. CC ) |
| 170 |
108
|
adantr |
|- ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x e. CC ) |
| 171 |
160 169 170
|
addsubassd |
|- ( ( ph /\ T < X ) -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) |
| 172 |
111 151 171
|
3eqtrd |
|- ( ( ph /\ T < X ) -> 0 = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) |
| 173 |
172
|
oveq2d |
|- ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - 0 ) = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) ) |
| 174 |
160
|
subid1d |
|- ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - 0 ) = S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) |
| 175 |
159
|
subidd |
|- ( ph -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) = 0 ) |
| 176 |
175
|
oveq1d |
|- ( ph -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) |
| 177 |
176
|
adantr |
|- ( ( ph /\ T < X ) -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) |
| 178 |
169 170
|
subcld |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) e. CC ) |
| 179 |
160 160 178
|
subsub4d |
|- ( ( ph /\ T < X ) -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) ) |
| 180 |
|
df-neg |
|- -u ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) |
| 181 |
169 170
|
negsubdi2d |
|- ( ( ph /\ T < X ) -> -u ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) |
| 182 |
180 181
|
eqtr3id |
|- ( ( ph /\ T < X ) -> ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) |
| 183 |
177 179 182
|
3eqtr3d |
|- ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) |
| 184 |
173 174 183
|
3eqtr3d |
|- ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) |
| 185 |
107
|
subidd |
|- ( ph -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = 0 ) |
| 186 |
185
|
eqcomd |
|- ( ph -> 0 = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) |
| 187 |
186
|
oveq2d |
|- ( ph -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + 0 ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 188 |
187
|
adantr |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + 0 ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 189 |
169
|
addridd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + 0 ) = S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) |
| 190 |
114 122 113 127 118
|
eliccd |
|- ( ( ph /\ T < X ) -> A e. ( ( B - X ) [,] B ) ) |
| 191 |
100
|
adantlr |
|- ( ( ( ph /\ T < X ) /\ x e. ( ( B - X ) [,] B ) ) -> ( F ` x ) e. CC ) |
| 192 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 193 |
8 192
|
feqresmpt |
|- ( ph -> ( F |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( F ` x ) ) ) |
| 194 |
8 192
|
fssresd |
|- ( ph -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> CC ) |
| 195 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 196 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 197 |
196
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
| 198 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 199 |
198
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
| 200 |
5 6 7
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 201 |
200
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 202 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 203 |
197 199 201 202
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 204 |
195 203
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 205 |
204
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 206 |
205 10
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 207 |
205
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 208 |
207
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 209 |
11 208
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 210 |
207
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 211 |
12 210
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 212 |
5 6 7 194 206 209 211
|
fourierdlem69 |
|- ( ph -> ( F |` ( A [,] B ) ) e. L^1 ) |
| 213 |
193 212
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. L^1 ) |
| 214 |
213
|
adantr |
|- ( ( ph /\ T < X ) -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. L^1 ) |
| 215 |
114 122 190 191 149 214
|
itgspliticc |
|- ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 216 |
215
|
oveq2d |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) |
| 217 |
216
|
oveq2d |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) ) |
| 218 |
107
|
adantr |
|- ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x e. CC ) |
| 219 |
215 218
|
eqeltrrd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) e. CC ) |
| 220 |
169 218 219
|
addsub12d |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) ) |
| 221 |
8
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> F : RR --> CC ) |
| 222 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
| 223 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 224 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
| 225 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 226 |
222 223 224 225
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 227 |
221 226
|
ffvelcdmd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 228 |
227 213
|
itgcl |
|- ( ph -> S. ( A [,] B ) ( F ` x ) _d x e. CC ) |
| 229 |
228
|
adantr |
|- ( ( ph /\ T < X ) -> S. ( A [,] B ) ( F ` x ) _d x e. CC ) |
| 230 |
169 169 229
|
subsub4d |
|- ( ( ph /\ T < X ) -> ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) |
| 231 |
230
|
eqcomd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) = ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 232 |
231
|
oveq2d |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) ) ) |
| 233 |
169
|
subidd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) = 0 ) |
| 234 |
233
|
oveq1d |
|- ( ( ph /\ T < X ) -> ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) = ( 0 - S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 235 |
|
df-neg |
|- -u S. ( A [,] B ) ( F ` x ) _d x = ( 0 - S. ( A [,] B ) ( F ` x ) _d x ) |
| 236 |
234 235
|
eqtr4di |
|- ( ( ph /\ T < X ) -> ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) = -u S. ( A [,] B ) ( F ` x ) _d x ) |
| 237 |
236
|
oveq2d |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + -u S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 238 |
218 229
|
negsubd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + -u S. ( A [,] B ) ( F ` x ) _d x ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 239 |
232 237 238
|
3eqtrd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 240 |
217 220 239
|
3eqtrd |
|- ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 241 |
188 189 240
|
3eqtr3d |
|- ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] A ) ( F ` x ) _d x = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 242 |
241
|
oveq2d |
|- ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) ) |
| 243 |
108 107 228
|
subsubd |
|- ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) = ( ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) + S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 244 |
93
|
oveq2d |
|- ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) |
| 245 |
244 109
|
eqtrd |
|- ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = 0 ) |
| 246 |
245
|
oveq1d |
|- ( ph -> ( ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) + S. ( A [,] B ) ( F ` x ) _d x ) = ( 0 + S. ( A [,] B ) ( F ` x ) _d x ) ) |
| 247 |
228
|
addlidd |
|- ( ph -> ( 0 + S. ( A [,] B ) ( F ` x ) _d x ) = S. ( A [,] B ) ( F ` x ) _d x ) |
| 248 |
243 246 247
|
3eqtrd |
|- ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] B ) ( F ` x ) _d x ) |
| 249 |
248
|
adantr |
|- ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] B ) ( F ` x ) _d x ) |
| 250 |
184 242 249
|
3eqtrd |
|- ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 251 |
39
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( A - X ) e. RR ) |
| 252 |
29
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( B - X ) e. RR ) |
| 253 |
1
|
adantr |
|- ( ( ph /\ X <_ T ) -> A e. RR ) |
| 254 |
39 1 50
|
ltled |
|- ( ph -> ( A - X ) <_ A ) |
| 255 |
254
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( A - X ) <_ A ) |
| 256 |
22
|
adantr |
|- ( ( ph /\ X <_ T ) -> X e. RR ) |
| 257 |
2
|
adantr |
|- ( ( ph /\ X <_ T ) -> B e. RR ) |
| 258 |
|
id |
|- ( X <_ T -> X <_ T ) |
| 259 |
258 3
|
breqtrdi |
|- ( X <_ T -> X <_ ( B - A ) ) |
| 260 |
259
|
adantl |
|- ( ( ph /\ X <_ T ) -> X <_ ( B - A ) ) |
| 261 |
256 257 253 260
|
lesubd |
|- ( ( ph /\ X <_ T ) -> A <_ ( B - X ) ) |
| 262 |
251 252 253 255 261
|
eliccd |
|- ( ( ph /\ X <_ T ) -> A e. ( ( A - X ) [,] ( B - X ) ) ) |
| 263 |
158
|
adantlr |
|- ( ( ( ph /\ X <_ T ) /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( F ` x ) e. CC ) |
| 264 |
132 102 1 50 78
|
eliood |
|- ( ph -> A e. ( ( A - X ) (,) +oo ) ) |
| 265 |
5 3 6 7 8 9 10 11 12 39 264
|
fourierdlem105 |
|- ( ph -> ( x e. ( ( A - X ) [,] A ) |-> ( F ` x ) ) e. L^1 ) |
| 266 |
265
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( x e. ( ( A - X ) [,] A ) |-> ( F ` x ) ) e. L^1 ) |
| 267 |
1
|
leidd |
|- ( ph -> A <_ A ) |
| 268 |
4
|
rpge0d |
|- ( ph -> 0 <_ X ) |
| 269 |
2 22
|
subge02d |
|- ( ph -> ( 0 <_ X <-> ( B - X ) <_ B ) ) |
| 270 |
268 269
|
mpbid |
|- ( ph -> ( B - X ) <_ B ) |
| 271 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ A /\ ( B - X ) <_ B ) ) -> ( A [,] ( B - X ) ) C_ ( A [,] B ) ) |
| 272 |
1 2 267 270 271
|
syl22anc |
|- ( ph -> ( A [,] ( B - X ) ) C_ ( A [,] B ) ) |
| 273 |
|
iccmbl |
|- ( ( A e. RR /\ ( B - X ) e. RR ) -> ( A [,] ( B - X ) ) e. dom vol ) |
| 274 |
1 29 273
|
syl2anc |
|- ( ph -> ( A [,] ( B - X ) ) e. dom vol ) |
| 275 |
272 274 227 213
|
iblss |
|- ( ph -> ( x e. ( A [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) |
| 276 |
275
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( x e. ( A [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) |
| 277 |
251 252 262 263 266 276
|
itgspliticc |
|- ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) ) |
| 278 |
268
|
adantr |
|- ( ( ph /\ X <_ T ) -> 0 <_ X ) |
| 279 |
269
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( 0 <_ X <-> ( B - X ) <_ B ) ) |
| 280 |
278 279
|
mpbid |
|- ( ( ph /\ X <_ T ) -> ( B - X ) <_ B ) |
| 281 |
253 257 252 261 280
|
eliccd |
|- ( ( ph /\ X <_ T ) -> ( B - X ) e. ( A [,] B ) ) |
| 282 |
227
|
adantlr |
|- ( ( ( ph /\ X <_ T ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 283 |
2
|
leidd |
|- ( ph -> B <_ B ) |
| 284 |
283
|
adantr |
|- ( ( ph /\ X <_ T ) -> B <_ B ) |
| 285 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ ( B - X ) /\ B <_ B ) ) -> ( ( B - X ) [,] B ) C_ ( A [,] B ) ) |
| 286 |
253 257 261 284 285
|
syl22anc |
|- ( ( ph /\ X <_ T ) -> ( ( B - X ) [,] B ) C_ ( A [,] B ) ) |
| 287 |
|
iccmbl |
|- ( ( ( B - X ) e. RR /\ B e. RR ) -> ( ( B - X ) [,] B ) e. dom vol ) |
| 288 |
29 2 287
|
syl2anc |
|- ( ph -> ( ( B - X ) [,] B ) e. dom vol ) |
| 289 |
288
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( ( B - X ) [,] B ) e. dom vol ) |
| 290 |
213
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. L^1 ) |
| 291 |
286 289 282 290
|
iblss |
|- ( ( ph /\ X <_ T ) -> ( x e. ( ( B - X ) [,] B ) |-> ( F ` x ) ) e. L^1 ) |
| 292 |
253 257 281 282 276 291
|
itgspliticc |
|- ( ( ph /\ X <_ T ) -> S. ( A [,] B ) ( F ` x ) _d x = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) |
| 293 |
292
|
oveq1d |
|- ( ( ph /\ X <_ T ) -> ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) |
| 294 |
8
|
adantr |
|- ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> F : RR --> CC ) |
| 295 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> A e. RR ) |
| 296 |
29
|
adantr |
|- ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> ( B - X ) e. RR ) |
| 297 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> x e. ( A [,] ( B - X ) ) ) |
| 298 |
|
eliccre |
|- ( ( A e. RR /\ ( B - X ) e. RR /\ x e. ( A [,] ( B - X ) ) ) -> x e. RR ) |
| 299 |
295 296 297 298
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> x e. RR ) |
| 300 |
294 299
|
ffvelcdmd |
|- ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> ( F ` x ) e. CC ) |
| 301 |
300 275
|
itgcl |
|- ( ph -> S. ( A [,] ( B - X ) ) ( F ` x ) _d x e. CC ) |
| 302 |
301 107 107
|
addsubassd |
|- ( ph -> ( ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 303 |
302
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 304 |
185
|
oveq2d |
|- ( ph -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + 0 ) ) |
| 305 |
301
|
addridd |
|- ( ph -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + 0 ) = S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) |
| 306 |
304 305
|
eqtrd |
|- ( ph -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) |
| 307 |
306
|
adantr |
|- ( ( ph /\ X <_ T ) -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) |
| 308 |
293 303 307
|
3eqtrrd |
|- ( ( ph /\ X <_ T ) -> S. ( A [,] ( B - X ) ) ( F ` x ) _d x = ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) |
| 309 |
308
|
oveq2d |
|- ( ( ph /\ X <_ T ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 310 |
93
|
adantr |
|- ( ( ph /\ X <_ T ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) |
| 311 |
107
|
adantr |
|- ( ( ph /\ X <_ T ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x e. CC ) |
| 312 |
310 311
|
eqeltrrd |
|- ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x e. CC ) |
| 313 |
282 290
|
itgcl |
|- ( ( ph /\ X <_ T ) -> S. ( A [,] B ) ( F ` x ) _d x e. CC ) |
| 314 |
312 313 311
|
addsub12d |
|- ( ( ph /\ X <_ T ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( A [,] B ) ( F ` x ) _d x + ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 315 |
313 312 311
|
addsubassd |
|- ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( A [,] B ) ( F ` x ) _d x + ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) |
| 316 |
314 315
|
eqtr4d |
|- ( ( ph /\ X <_ T ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) |
| 317 |
277 309 316
|
3eqtrd |
|- ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) |
| 318 |
310
|
oveq2d |
|- ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) |
| 319 |
313 312
|
pncand |
|- ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = S. ( A [,] B ) ( F ` x ) _d x ) |
| 320 |
317 318 319
|
3eqtrd |
|- ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 321 |
250 320 55 22
|
ltlecasei |
|- ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |