| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem107.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem107.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem107.t |  |-  T = ( B - A ) | 
						
							| 4 |  | fourierdlem107.x |  |-  ( ph -> X e. RR+ ) | 
						
							| 5 |  | fourierdlem107.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem107.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | fourierdlem107.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 8 |  | fourierdlem107.f |  |-  ( ph -> F : RR --> CC ) | 
						
							| 9 |  | fourierdlem107.fper |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 10 |  | fourierdlem107.fcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 11 |  | fourierdlem107.r |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 12 |  | fourierdlem107.l |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 13 |  | fourierdlem107.o |  |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 14 |  | fourierdlem107.h |  |-  H = ( { ( A - X ) , A } u. { y e. ( ( A - X ) [,] A ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
							| 15 |  | fourierdlem107.n |  |-  N = ( ( # ` H ) - 1 ) | 
						
							| 16 |  | fourierdlem107.s |  |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) | 
						
							| 17 |  | fourierdlem107.e |  |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) | 
						
							| 18 |  | fourierdlem107.z |  |-  Z = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) | 
						
							| 19 |  | fourierdlem107.i |  |-  I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } , RR , < ) ) | 
						
							| 20 | 3 | oveq2i |  |-  ( ( A - X ) + T ) = ( ( A - X ) + ( B - A ) ) | 
						
							| 21 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 22 | 4 | rpred |  |-  ( ph -> X e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 24 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 25 | 21 23 24 21 | subadd4b |  |-  ( ph -> ( ( A - X ) + ( B - A ) ) = ( ( A - A ) + ( B - X ) ) ) | 
						
							| 26 | 20 25 | eqtrid |  |-  ( ph -> ( ( A - X ) + T ) = ( ( A - A ) + ( B - X ) ) ) | 
						
							| 27 | 21 | subidd |  |-  ( ph -> ( A - A ) = 0 ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ph -> ( ( A - A ) + ( B - X ) ) = ( 0 + ( B - X ) ) ) | 
						
							| 29 | 2 22 | resubcld |  |-  ( ph -> ( B - X ) e. RR ) | 
						
							| 30 | 29 | recnd |  |-  ( ph -> ( B - X ) e. CC ) | 
						
							| 31 | 30 | addlidd |  |-  ( ph -> ( 0 + ( B - X ) ) = ( B - X ) ) | 
						
							| 32 | 26 28 31 | 3eqtrd |  |-  ( ph -> ( ( A - X ) + T ) = ( B - X ) ) | 
						
							| 33 | 3 | oveq2i |  |-  ( A + T ) = ( A + ( B - A ) ) | 
						
							| 34 | 21 24 | pncan3d |  |-  ( ph -> ( A + ( B - A ) ) = B ) | 
						
							| 35 | 33 34 | eqtrid |  |-  ( ph -> ( A + T ) = B ) | 
						
							| 36 | 32 35 | oveq12d |  |-  ( ph -> ( ( ( A - X ) + T ) [,] ( A + T ) ) = ( ( B - X ) [,] B ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ph -> ( ( B - X ) [,] B ) = ( ( ( A - X ) + T ) [,] ( A + T ) ) ) | 
						
							| 38 | 37 | itgeq1d |  |-  ( ph -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = S. ( ( ( A - X ) + T ) [,] ( A + T ) ) ( F ` x ) _d x ) | 
						
							| 39 | 1 22 | resubcld |  |-  ( ph -> ( A - X ) e. RR ) | 
						
							| 40 |  | fveq2 |  |-  ( i = j -> ( p ` i ) = ( p ` j ) ) | 
						
							| 41 |  | oveq1 |  |-  ( i = j -> ( i + 1 ) = ( j + 1 ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( i = j -> ( p ` ( i + 1 ) ) = ( p ` ( j + 1 ) ) ) | 
						
							| 43 | 40 42 | breq12d |  |-  ( i = j -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( p ` j ) < ( p ` ( j + 1 ) ) ) ) | 
						
							| 44 | 43 | cbvralvw |  |-  ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) | 
						
							| 45 | 44 | a1i |  |-  ( m e. NN -> ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( m e. NN -> ( ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) ) | 
						
							| 47 | 46 | rabbidv |  |-  ( m e. NN -> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 48 | 47 | mpteq2ia |  |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 49 | 13 48 | eqtri |  |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 50 | 1 4 | ltsubrpd |  |-  ( ph -> ( A - X ) < A ) | 
						
							| 51 | 3 5 6 7 39 1 50 13 14 15 16 | fourierdlem54 |  |-  ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , H ) ) ) | 
						
							| 52 | 51 | simpld |  |-  ( ph -> ( N e. NN /\ S e. ( O ` N ) ) ) | 
						
							| 53 | 52 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 54 | 2 1 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 55 | 3 54 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 56 | 52 | simprd |  |-  ( ph -> S e. ( O ` N ) ) | 
						
							| 57 | 39 | adantr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> ( A - X ) e. RR ) | 
						
							| 58 | 1 | adantr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> A e. RR ) | 
						
							| 59 |  | simpr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> x e. ( ( A - X ) [,] A ) ) | 
						
							| 60 |  | eliccre |  |-  ( ( ( A - X ) e. RR /\ A e. RR /\ x e. ( ( A - X ) [,] A ) ) -> x e. RR ) | 
						
							| 61 | 57 58 59 60 | syl3anc |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> x e. RR ) | 
						
							| 62 | 61 9 | syldan |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 63 |  | fveq2 |  |-  ( i = j -> ( S ` i ) = ( S ` j ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( i = j -> ( ( S ` i ) + T ) = ( ( S ` j ) + T ) ) | 
						
							| 65 | 64 | cbvmptv |  |-  ( i e. ( 0 ... N ) |-> ( ( S ` i ) + T ) ) = ( j e. ( 0 ... N ) |-> ( ( S ` j ) + T ) ) | 
						
							| 66 |  | eqid |  |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( ( A - X ) + T ) /\ ( p ` m ) = ( A + T ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( ( A - X ) + T ) /\ ( p ` m ) = ( A + T ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 67 | 6 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> M e. NN ) | 
						
							| 68 | 7 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> Q e. ( P ` M ) ) | 
						
							| 69 | 8 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> F : RR --> CC ) | 
						
							| 70 | 9 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 71 | 10 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 72 | 39 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) e. RR ) | 
						
							| 73 | 72 | rexrd |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) e. RR* ) | 
						
							| 74 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 75 | 74 | a1i |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> +oo e. RR* ) | 
						
							| 76 | 1 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> A e. RR ) | 
						
							| 77 | 50 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) < A ) | 
						
							| 78 | 1 | ltpnfd |  |-  ( ph -> A < +oo ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> A < +oo ) | 
						
							| 80 | 73 75 76 77 79 | eliood |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> A e. ( ( A - X ) (,) +oo ) ) | 
						
							| 81 |  | simpr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> j e. ( 0 ..^ N ) ) | 
						
							| 82 |  | eqid |  |-  ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) | 
						
							| 83 |  | eqid |  |-  ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) = ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) | 
						
							| 84 |  | eqid |  |-  ( y e. ( ( ( Z ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) = ( y e. ( ( ( Z ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) | 
						
							| 85 | 5 3 67 68 69 70 71 72 80 13 14 15 16 17 18 81 82 83 84 19 | fourierdlem90 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 86 | 11 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 87 |  | eqid |  |-  ( i e. ( 0 ..^ M ) |-> R ) = ( i e. ( 0 ..^ M ) |-> R ) | 
						
							| 88 | 5 3 67 68 69 70 71 86 72 80 13 14 15 16 17 18 81 82 19 87 | fourierdlem89 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( Z ` ( E ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` j ) ) ) , ( ( i e. ( 0 ..^ M ) |-> R ) ` ( I ` ( S ` j ) ) ) , ( F ` ( Z ` ( E ` ( S ` j ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) | 
						
							| 89 | 12 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 90 |  | eqid |  |-  ( i e. ( 0 ..^ M ) |-> L ) = ( i e. ( 0 ..^ M ) |-> L ) | 
						
							| 91 | 5 3 67 68 69 70 71 89 72 80 13 14 15 16 17 18 81 82 19 90 | fourierdlem91 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( E ` ( S ` ( j + 1 ) ) ) = ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) , ( ( i e. ( 0 ..^ M ) |-> L ) ` ( I ` ( S ` j ) ) ) , ( F ` ( E ` ( S ` ( j + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) | 
						
							| 92 | 39 1 49 53 55 56 62 65 66 8 85 88 91 | fourierdlem92 |  |-  ( ph -> S. ( ( ( A - X ) + T ) [,] ( A + T ) ) ( F ` x ) _d x = S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) | 
						
							| 93 | 38 92 | eqtrd |  |-  ( ph -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) | 
						
							| 94 | 8 | adantr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> F : RR --> CC ) | 
						
							| 95 | 29 | adantr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> ( B - X ) e. RR ) | 
						
							| 96 | 2 | adantr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> B e. RR ) | 
						
							| 97 |  | simpr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> x e. ( ( B - X ) [,] B ) ) | 
						
							| 98 |  | eliccre |  |-  ( ( ( B - X ) e. RR /\ B e. RR /\ x e. ( ( B - X ) [,] B ) ) -> x e. RR ) | 
						
							| 99 | 95 96 97 98 | syl3anc |  |-  ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> x e. RR ) | 
						
							| 100 | 94 99 | ffvelcdmd |  |-  ( ( ph /\ x e. ( ( B - X ) [,] B ) ) -> ( F ` x ) e. CC ) | 
						
							| 101 | 29 | rexrd |  |-  ( ph -> ( B - X ) e. RR* ) | 
						
							| 102 | 74 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 103 | 2 4 | ltsubrpd |  |-  ( ph -> ( B - X ) < B ) | 
						
							| 104 | 2 | ltpnfd |  |-  ( ph -> B < +oo ) | 
						
							| 105 | 101 102 2 103 104 | eliood |  |-  ( ph -> B e. ( ( B - X ) (,) +oo ) ) | 
						
							| 106 | 5 3 6 7 8 9 10 11 12 29 105 | fourierdlem105 |  |-  ( ph -> ( x e. ( ( B - X ) [,] B ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 107 | 100 106 | itgcl |  |-  ( ph -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x e. CC ) | 
						
							| 108 | 93 107 | eqeltrrd |  |-  ( ph -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x e. CC ) | 
						
							| 109 | 108 | subidd |  |-  ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = 0 ) | 
						
							| 110 | 109 | eqcomd |  |-  ( ph -> 0 = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ph /\ T < X ) -> 0 = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 112 | 39 | adantr |  |-  ( ( ph /\ T < X ) -> ( A - X ) e. RR ) | 
						
							| 113 | 1 | adantr |  |-  ( ( ph /\ T < X ) -> A e. RR ) | 
						
							| 114 | 29 | adantr |  |-  ( ( ph /\ T < X ) -> ( B - X ) e. RR ) | 
						
							| 115 | 5 6 7 | fourierdlem11 |  |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) | 
						
							| 116 | 115 | simp3d |  |-  ( ph -> A < B ) | 
						
							| 117 | 1 2 116 | ltled |  |-  ( ph -> A <_ B ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ph /\ T < X ) -> A <_ B ) | 
						
							| 119 | 1 2 22 | lesub1d |  |-  ( ph -> ( A <_ B <-> ( A - X ) <_ ( B - X ) ) ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ph /\ T < X ) -> ( A <_ B <-> ( A - X ) <_ ( B - X ) ) ) | 
						
							| 121 | 118 120 | mpbid |  |-  ( ( ph /\ T < X ) -> ( A - X ) <_ ( B - X ) ) | 
						
							| 122 | 2 | adantr |  |-  ( ( ph /\ T < X ) -> B e. RR ) | 
						
							| 123 | 22 | adantr |  |-  ( ( ph /\ T < X ) -> X e. RR ) | 
						
							| 124 |  | simpr |  |-  ( ( ph /\ T < X ) -> T < X ) | 
						
							| 125 | 3 124 | eqbrtrrid |  |-  ( ( ph /\ T < X ) -> ( B - A ) < X ) | 
						
							| 126 | 122 113 123 125 | ltsub23d |  |-  ( ( ph /\ T < X ) -> ( B - X ) < A ) | 
						
							| 127 | 114 113 126 | ltled |  |-  ( ( ph /\ T < X ) -> ( B - X ) <_ A ) | 
						
							| 128 | 112 113 114 121 127 | eliccd |  |-  ( ( ph /\ T < X ) -> ( B - X ) e. ( ( A - X ) [,] A ) ) | 
						
							| 129 | 8 | adantr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> F : RR --> CC ) | 
						
							| 130 | 129 61 | ffvelcdmd |  |-  ( ( ph /\ x e. ( ( A - X ) [,] A ) ) -> ( F ` x ) e. CC ) | 
						
							| 131 | 130 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ x e. ( ( A - X ) [,] A ) ) -> ( F ` x ) e. CC ) | 
						
							| 132 | 39 | rexrd |  |-  ( ph -> ( A - X ) e. RR* ) | 
						
							| 133 | 1 2 22 116 | ltsub1dd |  |-  ( ph -> ( A - X ) < ( B - X ) ) | 
						
							| 134 | 29 | ltpnfd |  |-  ( ph -> ( B - X ) < +oo ) | 
						
							| 135 | 132 102 29 133 134 | eliood |  |-  ( ph -> ( B - X ) e. ( ( A - X ) (,) +oo ) ) | 
						
							| 136 | 5 3 6 7 8 9 10 11 12 39 135 | fourierdlem105 |  |-  ( ph -> ( x e. ( ( A - X ) [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 137 | 136 | adantr |  |-  ( ( ph /\ T < X ) -> ( x e. ( ( A - X ) [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 138 | 6 | adantr |  |-  ( ( ph /\ T < X ) -> M e. NN ) | 
						
							| 139 | 7 | adantr |  |-  ( ( ph /\ T < X ) -> Q e. ( P ` M ) ) | 
						
							| 140 | 8 | adantr |  |-  ( ( ph /\ T < X ) -> F : RR --> CC ) | 
						
							| 141 | 9 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 142 | 10 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 143 | 11 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 144 | 12 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 145 | 101 | adantr |  |-  ( ( ph /\ T < X ) -> ( B - X ) e. RR* ) | 
						
							| 146 | 74 | a1i |  |-  ( ( ph /\ T < X ) -> +oo e. RR* ) | 
						
							| 147 | 113 | ltpnfd |  |-  ( ( ph /\ T < X ) -> A < +oo ) | 
						
							| 148 | 145 146 113 126 147 | eliood |  |-  ( ( ph /\ T < X ) -> A e. ( ( B - X ) (,) +oo ) ) | 
						
							| 149 | 5 3 138 139 140 141 142 143 144 114 148 | fourierdlem105 |  |-  ( ( ph /\ T < X ) -> ( x e. ( ( B - X ) [,] A ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 150 | 112 113 128 131 137 149 | itgspliticc |  |-  ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 151 | 150 | oveq1d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 152 | 8 | adantr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> F : RR --> CC ) | 
						
							| 153 | 39 | adantr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) e. RR ) | 
						
							| 154 | 29 | adantr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( B - X ) e. RR ) | 
						
							| 155 |  | simpr |  |-  ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> x e. ( ( A - X ) [,] ( B - X ) ) ) | 
						
							| 156 |  | eliccre |  |-  ( ( ( A - X ) e. RR /\ ( B - X ) e. RR /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> x e. RR ) | 
						
							| 157 | 153 154 155 156 | syl3anc |  |-  ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> x e. RR ) | 
						
							| 158 | 152 157 | ffvelcdmd |  |-  ( ( ph /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( F ` x ) e. CC ) | 
						
							| 159 | 158 136 | itgcl |  |-  ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x e. CC ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x e. CC ) | 
						
							| 161 | 8 | adantr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> F : RR --> CC ) | 
						
							| 162 | 29 | adantr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> ( B - X ) e. RR ) | 
						
							| 163 | 1 | adantr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> A e. RR ) | 
						
							| 164 |  | simpr |  |-  ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> x e. ( ( B - X ) [,] A ) ) | 
						
							| 165 |  | eliccre |  |-  ( ( ( B - X ) e. RR /\ A e. RR /\ x e. ( ( B - X ) [,] A ) ) -> x e. RR ) | 
						
							| 166 | 162 163 164 165 | syl3anc |  |-  ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> x e. RR ) | 
						
							| 167 | 161 166 | ffvelcdmd |  |-  ( ( ph /\ x e. ( ( B - X ) [,] A ) ) -> ( F ` x ) e. CC ) | 
						
							| 168 | 167 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ x e. ( ( B - X ) [,] A ) ) -> ( F ` x ) e. CC ) | 
						
							| 169 | 168 149 | itgcl |  |-  ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] A ) ( F ` x ) _d x e. CC ) | 
						
							| 170 | 108 | adantr |  |-  ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x e. CC ) | 
						
							| 171 | 160 169 170 | addsubassd |  |-  ( ( ph /\ T < X ) -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) | 
						
							| 172 | 111 151 171 | 3eqtrd |  |-  ( ( ph /\ T < X ) -> 0 = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) | 
						
							| 173 | 172 | oveq2d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - 0 ) = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) ) | 
						
							| 174 | 160 | subid1d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - 0 ) = S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) | 
						
							| 175 | 159 | subidd |  |-  ( ph -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) = 0 ) | 
						
							| 176 | 175 | oveq1d |  |-  ( ph -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) | 
						
							| 177 | 176 | adantr |  |-  ( ( ph /\ T < X ) -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) | 
						
							| 178 | 169 170 | subcld |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) e. CC ) | 
						
							| 179 | 160 160 178 | subsub4d |  |-  ( ( ph /\ T < X ) -> ( ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) ) | 
						
							| 180 |  | df-neg |  |-  -u ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 181 | 169 170 | negsubdi2d |  |-  ( ( ph /\ T < X ) -> -u ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 182 | 180 181 | eqtr3id |  |-  ( ( ph /\ T < X ) -> ( 0 - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 183 | 177 179 182 | 3eqtr3d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x - ( S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 184 | 173 174 183 | 3eqtr3d |  |-  ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 185 | 107 | subidd |  |-  ( ph -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = 0 ) | 
						
							| 186 | 185 | eqcomd |  |-  ( ph -> 0 = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) | 
						
							| 187 | 186 | oveq2d |  |-  ( ph -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + 0 ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + 0 ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 189 | 169 | addridd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + 0 ) = S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) | 
						
							| 190 | 114 122 113 127 118 | eliccd |  |-  ( ( ph /\ T < X ) -> A e. ( ( B - X ) [,] B ) ) | 
						
							| 191 | 100 | adantlr |  |-  ( ( ( ph /\ T < X ) /\ x e. ( ( B - X ) [,] B ) ) -> ( F ` x ) e. CC ) | 
						
							| 192 | 1 2 | iccssred |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 193 | 8 192 | feqresmpt |  |-  ( ph -> ( F |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( F ` x ) ) ) | 
						
							| 194 | 8 192 | fssresd |  |-  ( ph -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> CC ) | 
						
							| 195 |  | ioossicc |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) | 
						
							| 196 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 197 | 196 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) | 
						
							| 198 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 199 | 198 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) | 
						
							| 200 | 5 6 7 | fourierdlem15 |  |-  ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) | 
						
							| 201 | 200 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) | 
						
							| 202 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 203 | 197 199 201 202 | fourierdlem8 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) | 
						
							| 204 | 195 203 | sstrid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) | 
						
							| 205 | 204 | resabs1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 206 | 205 10 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 207 | 205 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 208 | 207 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 209 | 11 208 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 210 | 207 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 211 | 12 210 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( A [,] B ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 212 | 5 6 7 194 206 209 211 | fourierdlem69 |  |-  ( ph -> ( F |` ( A [,] B ) ) e. L^1 ) | 
						
							| 213 | 193 212 | eqeltrrd |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 214 | 213 | adantr |  |-  ( ( ph /\ T < X ) -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 215 | 114 122 190 191 149 214 | itgspliticc |  |-  ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 216 | 215 | oveq2d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 217 | 216 | oveq2d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) ) | 
						
							| 218 | 107 | adantr |  |-  ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x e. CC ) | 
						
							| 219 | 215 218 | eqeltrrd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) e. CC ) | 
						
							| 220 | 169 218 219 | addsub12d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) ) | 
						
							| 221 | 8 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> F : RR --> CC ) | 
						
							| 222 | 1 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) | 
						
							| 223 | 2 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) | 
						
							| 224 |  | simpr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) | 
						
							| 225 |  | eliccre |  |-  ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) | 
						
							| 226 | 222 223 224 225 | syl3anc |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) | 
						
							| 227 | 221 226 | ffvelcdmd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) | 
						
							| 228 | 227 213 | itgcl |  |-  ( ph -> S. ( A [,] B ) ( F ` x ) _d x e. CC ) | 
						
							| 229 | 228 | adantr |  |-  ( ( ph /\ T < X ) -> S. ( A [,] B ) ( F ` x ) _d x e. CC ) | 
						
							| 230 | 169 169 229 | subsub4d |  |-  ( ( ph /\ T < X ) -> ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) = ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 231 | 230 | eqcomd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) = ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 232 | 231 | oveq2d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 233 | 169 | subidd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) = 0 ) | 
						
							| 234 | 233 | oveq1d |  |-  ( ( ph /\ T < X ) -> ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) = ( 0 - S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 235 |  | df-neg |  |-  -u S. ( A [,] B ) ( F ` x ) _d x = ( 0 - S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 236 | 234 235 | eqtr4di |  |-  ( ( ph /\ T < X ) -> ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) = -u S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 237 | 236 | oveq2d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) - S. ( A [,] B ) ( F ` x ) _d x ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + -u S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 238 | 218 229 | negsubd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + -u S. ( A [,] B ) ( F ` x ) _d x ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 239 | 232 237 238 | 3eqtrd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] B ) ( F ` x ) _d x ) ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 240 | 217 220 239 | 3eqtrd |  |-  ( ( ph /\ T < X ) -> ( S. ( ( B - X ) [,] A ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 241 | 188 189 240 | 3eqtr3d |  |-  ( ( ph /\ T < X ) -> S. ( ( B - X ) [,] A ) ( F ` x ) _d x = ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 242 | 241 | oveq2d |  |-  ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] A ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 243 | 108 107 228 | subsubd |  |-  ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) = ( ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) + S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 244 | 93 | oveq2d |  |-  ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 245 | 244 109 | eqtrd |  |-  ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = 0 ) | 
						
							| 246 | 245 | oveq1d |  |-  ( ph -> ( ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) + S. ( A [,] B ) ( F ` x ) _d x ) = ( 0 + S. ( A [,] B ) ( F ` x ) _d x ) ) | 
						
							| 247 | 228 | addlidd |  |-  ( ph -> ( 0 + S. ( A [,] B ) ( F ` x ) _d x ) = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 248 | 243 246 247 | 3eqtrd |  |-  ( ph -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 249 | 248 | adantr |  |-  ( ( ph /\ T < X ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( A [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 250 | 184 242 249 | 3eqtrd |  |-  ( ( ph /\ T < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 251 | 39 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( A - X ) e. RR ) | 
						
							| 252 | 29 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( B - X ) e. RR ) | 
						
							| 253 | 1 | adantr |  |-  ( ( ph /\ X <_ T ) -> A e. RR ) | 
						
							| 254 | 39 1 50 | ltled |  |-  ( ph -> ( A - X ) <_ A ) | 
						
							| 255 | 254 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( A - X ) <_ A ) | 
						
							| 256 | 22 | adantr |  |-  ( ( ph /\ X <_ T ) -> X e. RR ) | 
						
							| 257 | 2 | adantr |  |-  ( ( ph /\ X <_ T ) -> B e. RR ) | 
						
							| 258 |  | id |  |-  ( X <_ T -> X <_ T ) | 
						
							| 259 | 258 3 | breqtrdi |  |-  ( X <_ T -> X <_ ( B - A ) ) | 
						
							| 260 | 259 | adantl |  |-  ( ( ph /\ X <_ T ) -> X <_ ( B - A ) ) | 
						
							| 261 | 256 257 253 260 | lesubd |  |-  ( ( ph /\ X <_ T ) -> A <_ ( B - X ) ) | 
						
							| 262 | 251 252 253 255 261 | eliccd |  |-  ( ( ph /\ X <_ T ) -> A e. ( ( A - X ) [,] ( B - X ) ) ) | 
						
							| 263 | 158 | adantlr |  |-  ( ( ( ph /\ X <_ T ) /\ x e. ( ( A - X ) [,] ( B - X ) ) ) -> ( F ` x ) e. CC ) | 
						
							| 264 | 132 102 1 50 78 | eliood |  |-  ( ph -> A e. ( ( A - X ) (,) +oo ) ) | 
						
							| 265 | 5 3 6 7 8 9 10 11 12 39 264 | fourierdlem105 |  |-  ( ph -> ( x e. ( ( A - X ) [,] A ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 266 | 265 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( x e. ( ( A - X ) [,] A ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 267 | 1 | leidd |  |-  ( ph -> A <_ A ) | 
						
							| 268 | 4 | rpge0d |  |-  ( ph -> 0 <_ X ) | 
						
							| 269 | 2 22 | subge02d |  |-  ( ph -> ( 0 <_ X <-> ( B - X ) <_ B ) ) | 
						
							| 270 | 268 269 | mpbid |  |-  ( ph -> ( B - X ) <_ B ) | 
						
							| 271 |  | iccss |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ A /\ ( B - X ) <_ B ) ) -> ( A [,] ( B - X ) ) C_ ( A [,] B ) ) | 
						
							| 272 | 1 2 267 270 271 | syl22anc |  |-  ( ph -> ( A [,] ( B - X ) ) C_ ( A [,] B ) ) | 
						
							| 273 |  | iccmbl |  |-  ( ( A e. RR /\ ( B - X ) e. RR ) -> ( A [,] ( B - X ) ) e. dom vol ) | 
						
							| 274 | 1 29 273 | syl2anc |  |-  ( ph -> ( A [,] ( B - X ) ) e. dom vol ) | 
						
							| 275 | 272 274 227 213 | iblss |  |-  ( ph -> ( x e. ( A [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 276 | 275 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( x e. ( A [,] ( B - X ) ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 277 | 251 252 262 263 266 276 | itgspliticc |  |-  ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) ) | 
						
							| 278 | 268 | adantr |  |-  ( ( ph /\ X <_ T ) -> 0 <_ X ) | 
						
							| 279 | 269 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( 0 <_ X <-> ( B - X ) <_ B ) ) | 
						
							| 280 | 278 279 | mpbid |  |-  ( ( ph /\ X <_ T ) -> ( B - X ) <_ B ) | 
						
							| 281 | 253 257 252 261 280 | eliccd |  |-  ( ( ph /\ X <_ T ) -> ( B - X ) e. ( A [,] B ) ) | 
						
							| 282 | 227 | adantlr |  |-  ( ( ( ph /\ X <_ T ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) | 
						
							| 283 | 2 | leidd |  |-  ( ph -> B <_ B ) | 
						
							| 284 | 283 | adantr |  |-  ( ( ph /\ X <_ T ) -> B <_ B ) | 
						
							| 285 |  | iccss |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ ( B - X ) /\ B <_ B ) ) -> ( ( B - X ) [,] B ) C_ ( A [,] B ) ) | 
						
							| 286 | 253 257 261 284 285 | syl22anc |  |-  ( ( ph /\ X <_ T ) -> ( ( B - X ) [,] B ) C_ ( A [,] B ) ) | 
						
							| 287 |  | iccmbl |  |-  ( ( ( B - X ) e. RR /\ B e. RR ) -> ( ( B - X ) [,] B ) e. dom vol ) | 
						
							| 288 | 29 2 287 | syl2anc |  |-  ( ph -> ( ( B - X ) [,] B ) e. dom vol ) | 
						
							| 289 | 288 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( ( B - X ) [,] B ) e. dom vol ) | 
						
							| 290 | 213 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 291 | 286 289 282 290 | iblss |  |-  ( ( ph /\ X <_ T ) -> ( x e. ( ( B - X ) [,] B ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 292 | 253 257 281 282 276 291 | itgspliticc |  |-  ( ( ph /\ X <_ T ) -> S. ( A [,] B ) ( F ` x ) _d x = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) | 
						
							| 293 | 292 | oveq1d |  |-  ( ( ph /\ X <_ T ) -> ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) | 
						
							| 294 | 8 | adantr |  |-  ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> F : RR --> CC ) | 
						
							| 295 | 1 | adantr |  |-  ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> A e. RR ) | 
						
							| 296 | 29 | adantr |  |-  ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> ( B - X ) e. RR ) | 
						
							| 297 |  | simpr |  |-  ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> x e. ( A [,] ( B - X ) ) ) | 
						
							| 298 |  | eliccre |  |-  ( ( A e. RR /\ ( B - X ) e. RR /\ x e. ( A [,] ( B - X ) ) ) -> x e. RR ) | 
						
							| 299 | 295 296 297 298 | syl3anc |  |-  ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> x e. RR ) | 
						
							| 300 | 294 299 | ffvelcdmd |  |-  ( ( ph /\ x e. ( A [,] ( B - X ) ) ) -> ( F ` x ) e. CC ) | 
						
							| 301 | 300 275 | itgcl |  |-  ( ph -> S. ( A [,] ( B - X ) ) ( F ` x ) _d x e. CC ) | 
						
							| 302 | 301 107 107 | addsubassd |  |-  ( ph -> ( ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 303 | 302 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 304 | 185 | oveq2d |  |-  ( ph -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + 0 ) ) | 
						
							| 305 | 301 | addridd |  |-  ( ph -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + 0 ) = S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) | 
						
							| 306 | 304 305 | eqtrd |  |-  ( ph -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) | 
						
							| 307 | 306 | adantr |  |-  ( ( ph /\ X <_ T ) -> ( S. ( A [,] ( B - X ) ) ( F ` x ) _d x + ( S. ( ( B - X ) [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) | 
						
							| 308 | 293 303 307 | 3eqtrrd |  |-  ( ( ph /\ X <_ T ) -> S. ( A [,] ( B - X ) ) ( F ` x ) _d x = ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) | 
						
							| 309 | 308 | oveq2d |  |-  ( ( ph /\ X <_ T ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + S. ( A [,] ( B - X ) ) ( F ` x ) _d x ) = ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 310 | 93 | adantr |  |-  ( ( ph /\ X <_ T ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x = S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) | 
						
							| 311 | 107 | adantr |  |-  ( ( ph /\ X <_ T ) -> S. ( ( B - X ) [,] B ) ( F ` x ) _d x e. CC ) | 
						
							| 312 | 310 311 | eqeltrrd |  |-  ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] A ) ( F ` x ) _d x e. CC ) | 
						
							| 313 | 282 290 | itgcl |  |-  ( ( ph /\ X <_ T ) -> S. ( A [,] B ) ( F ` x ) _d x e. CC ) | 
						
							| 314 | 312 313 311 | addsub12d |  |-  ( ( ph /\ X <_ T ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( S. ( A [,] B ) ( F ` x ) _d x + ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 315 | 313 312 311 | addsubassd |  |-  ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( S. ( A [,] B ) ( F ` x ) _d x + ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) ) | 
						
							| 316 | 314 315 | eqtr4d |  |-  ( ( ph /\ X <_ T ) -> ( S. ( ( A - X ) [,] A ) ( F ` x ) _d x + ( S. ( A [,] B ) ( F ` x ) _d x - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) = ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) | 
						
							| 317 | 277 309 316 | 3eqtrd |  |-  ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) ) | 
						
							| 318 | 310 | oveq2d |  |-  ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( B - X ) [,] B ) ( F ` x ) _d x ) = ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) ) | 
						
							| 319 | 313 312 | pncand |  |-  ( ( ph /\ X <_ T ) -> ( ( S. ( A [,] B ) ( F ` x ) _d x + S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) - S. ( ( A - X ) [,] A ) ( F ` x ) _d x ) = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 320 | 317 318 319 | 3eqtrd |  |-  ( ( ph /\ X <_ T ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 321 | 250 320 55 22 | ltlecasei |  |-  ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |