| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem91.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem91.t |  |-  T = ( B - A ) | 
						
							| 3 |  | fourierdlem91.m |  |-  ( ph -> M e. NN ) | 
						
							| 4 |  | fourierdlem91.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 5 |  | fourierdlem91.f |  |-  ( ph -> F : RR --> CC ) | 
						
							| 6 |  | fourierdlem91.6 |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 7 |  | fourierdlem91.fcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 8 |  | fourierdlem91.l |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 9 |  | fourierdlem91.c |  |-  ( ph -> C e. RR ) | 
						
							| 10 |  | fourierdlem91.d |  |-  ( ph -> D e. ( C (,) +oo ) ) | 
						
							| 11 |  | fourierdlem91.o |  |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = C /\ ( p ` m ) = D ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 12 |  | fourierdlem91.h |  |-  H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
							| 13 |  | fourierdlem91.n |  |-  N = ( ( # ` H ) - 1 ) | 
						
							| 14 |  | fourierdlem91.s |  |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) | 
						
							| 15 |  | fourierdlem91.e |  |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) | 
						
							| 16 |  | fourierdlem91.J |  |-  Z = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) | 
						
							| 17 |  | fourierdlem91.17 |  |-  ( ph -> J e. ( 0 ..^ N ) ) | 
						
							| 18 |  | fourierdlem91.u |  |-  U = ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 19 |  | fourierdlem91.i |  |-  I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } , RR , < ) ) | 
						
							| 20 |  | fourierdlem91.w |  |-  W = ( i e. ( 0 ..^ M ) |-> L ) | 
						
							| 21 | 1 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 22 | 3 21 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 23 | 4 22 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 25 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 27 |  | fzossfz |  |-  ( 0 ..^ M ) C_ ( 0 ... M ) | 
						
							| 28 | 1 3 4 2 15 16 19 | fourierdlem37 |  |-  ( ph -> ( I : RR --> ( 0 ..^ M ) /\ ( x e. RR -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } ) ) ) | 
						
							| 29 | 28 | simpld |  |-  ( ph -> I : RR --> ( 0 ..^ M ) ) | 
						
							| 30 |  | elioore |  |-  ( D e. ( C (,) +oo ) -> D e. RR ) | 
						
							| 31 | 10 30 | syl |  |-  ( ph -> D e. RR ) | 
						
							| 32 |  | elioo4g |  |-  ( D e. ( C (,) +oo ) <-> ( ( C e. RR* /\ +oo e. RR* /\ D e. RR ) /\ ( C < D /\ D < +oo ) ) ) | 
						
							| 33 | 10 32 | sylib |  |-  ( ph -> ( ( C e. RR* /\ +oo e. RR* /\ D e. RR ) /\ ( C < D /\ D < +oo ) ) ) | 
						
							| 34 | 33 | simprd |  |-  ( ph -> ( C < D /\ D < +oo ) ) | 
						
							| 35 | 34 | simpld |  |-  ( ph -> C < D ) | 
						
							| 36 |  | oveq1 |  |-  ( y = x -> ( y + ( k x. T ) ) = ( x + ( k x. T ) ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( y = x -> ( ( y + ( k x. T ) ) e. ran Q <-> ( x + ( k x. T ) ) e. ran Q ) ) | 
						
							| 38 | 37 | rexbidv |  |-  ( y = x -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( x + ( k x. T ) ) e. ran Q ) ) | 
						
							| 39 | 38 | cbvrabv |  |-  { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } | 
						
							| 40 | 39 | uneq2i |  |-  ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
							| 41 | 12 | fveq2i |  |-  ( # ` H ) = ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) | 
						
							| 42 | 41 | oveq1i |  |-  ( ( # ` H ) - 1 ) = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
							| 43 | 13 42 | eqtri |  |-  N = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
							| 44 |  | isoeq5 |  |-  ( H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... N ) , H ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 45 | 12 44 | ax-mp |  |-  ( f Isom < , < ( ( 0 ... N ) , H ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 46 | 45 | iotabii |  |-  ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 47 | 14 46 | eqtri |  |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 48 | 2 1 3 4 9 31 35 11 40 43 47 | fourierdlem54 |  |-  ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 49 | 48 | simpld |  |-  ( ph -> ( N e. NN /\ S e. ( O ` N ) ) ) | 
						
							| 50 | 49 | simprd |  |-  ( ph -> S e. ( O ` N ) ) | 
						
							| 51 | 49 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 52 | 11 | fourierdlem2 |  |-  ( N e. NN -> ( S e. ( O ` N ) <-> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ph -> ( S e. ( O ` N ) <-> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) | 
						
							| 54 | 50 53 | mpbid |  |-  ( ph -> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) | 
						
							| 55 | 54 | simpld |  |-  ( ph -> S e. ( RR ^m ( 0 ... N ) ) ) | 
						
							| 56 |  | elmapi |  |-  ( S e. ( RR ^m ( 0 ... N ) ) -> S : ( 0 ... N ) --> RR ) | 
						
							| 57 | 55 56 | syl |  |-  ( ph -> S : ( 0 ... N ) --> RR ) | 
						
							| 58 |  | elfzofz |  |-  ( J e. ( 0 ..^ N ) -> J e. ( 0 ... N ) ) | 
						
							| 59 | 17 58 | syl |  |-  ( ph -> J e. ( 0 ... N ) ) | 
						
							| 60 | 57 59 | ffvelcdmd |  |-  ( ph -> ( S ` J ) e. RR ) | 
						
							| 61 | 29 60 | ffvelcdmd |  |-  ( ph -> ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) | 
						
							| 62 | 27 61 | sselid |  |-  ( ph -> ( I ` ( S ` J ) ) e. ( 0 ... M ) ) | 
						
							| 63 | 26 62 | ffvelcdmd |  |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) e. RR ) | 
						
							| 64 | 63 | rexrd |  |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) e. RR* ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( I ` ( S ` J ) ) ) e. RR* ) | 
						
							| 66 |  | fzofzp1 |  |-  ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( I ` ( S ` J ) ) + 1 ) e. ( 0 ... M ) ) | 
						
							| 67 | 61 66 | syl |  |-  ( ph -> ( ( I ` ( S ` J ) ) + 1 ) e. ( 0 ... M ) ) | 
						
							| 68 | 26 67 | ffvelcdmd |  |-  ( ph -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR ) | 
						
							| 69 | 68 | rexrd |  |-  ( ph -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR* ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR* ) | 
						
							| 71 | 1 3 4 | fourierdlem11 |  |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) | 
						
							| 72 | 71 | simp1d |  |-  ( ph -> A e. RR ) | 
						
							| 73 | 72 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 74 | 71 | simp2d |  |-  ( ph -> B e. RR ) | 
						
							| 75 |  | iocssre |  |-  ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) | 
						
							| 76 | 73 74 75 | syl2anc |  |-  ( ph -> ( A (,] B ) C_ RR ) | 
						
							| 77 | 71 | simp3d |  |-  ( ph -> A < B ) | 
						
							| 78 | 72 74 77 2 15 | fourierdlem4 |  |-  ( ph -> E : RR --> ( A (,] B ) ) | 
						
							| 79 |  | fzofzp1 |  |-  ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ( 0 ... N ) ) | 
						
							| 80 | 17 79 | syl |  |-  ( ph -> ( J + 1 ) e. ( 0 ... N ) ) | 
						
							| 81 | 57 80 | ffvelcdmd |  |-  ( ph -> ( S ` ( J + 1 ) ) e. RR ) | 
						
							| 82 | 78 81 | ffvelcdmd |  |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. ( A (,] B ) ) | 
						
							| 83 | 76 82 | sseldd |  |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. RR ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. RR ) | 
						
							| 85 | 72 74 | iccssred |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 86 | 72 74 77 16 | fourierdlem17 |  |-  ( ph -> Z : ( A (,] B ) --> ( A [,] B ) ) | 
						
							| 87 | 78 60 | ffvelcdmd |  |-  ( ph -> ( E ` ( S ` J ) ) e. ( A (,] B ) ) | 
						
							| 88 | 86 87 | ffvelcdmd |  |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) e. ( A [,] B ) ) | 
						
							| 89 | 85 88 | sseldd |  |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) e. RR ) | 
						
							| 90 | 54 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) | 
						
							| 91 |  | fveq2 |  |-  ( i = J -> ( S ` i ) = ( S ` J ) ) | 
						
							| 92 |  | oveq1 |  |-  ( i = J -> ( i + 1 ) = ( J + 1 ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( i = J -> ( S ` ( i + 1 ) ) = ( S ` ( J + 1 ) ) ) | 
						
							| 94 | 91 93 | breq12d |  |-  ( i = J -> ( ( S ` i ) < ( S ` ( i + 1 ) ) <-> ( S ` J ) < ( S ` ( J + 1 ) ) ) ) | 
						
							| 95 | 94 | rspccva |  |-  ( ( A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) /\ J e. ( 0 ..^ N ) ) -> ( S ` J ) < ( S ` ( J + 1 ) ) ) | 
						
							| 96 | 90 17 95 | syl2anc |  |-  ( ph -> ( S ` J ) < ( S ` ( J + 1 ) ) ) | 
						
							| 97 | 60 81 | posdifd |  |-  ( ph -> ( ( S ` J ) < ( S ` ( J + 1 ) ) <-> 0 < ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 98 | 96 97 | mpbid |  |-  ( ph -> 0 < ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) | 
						
							| 99 |  | eleq1 |  |-  ( j = J -> ( j e. ( 0 ..^ N ) <-> J e. ( 0 ..^ N ) ) ) | 
						
							| 100 | 99 | anbi2d |  |-  ( j = J -> ( ( ph /\ j e. ( 0 ..^ N ) ) <-> ( ph /\ J e. ( 0 ..^ N ) ) ) ) | 
						
							| 101 |  | oveq1 |  |-  ( j = J -> ( j + 1 ) = ( J + 1 ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( j = J -> ( S ` ( j + 1 ) ) = ( S ` ( J + 1 ) ) ) | 
						
							| 103 | 102 | fveq2d |  |-  ( j = J -> ( E ` ( S ` ( j + 1 ) ) ) = ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 104 |  | fveq2 |  |-  ( j = J -> ( S ` j ) = ( S ` J ) ) | 
						
							| 105 | 104 | fveq2d |  |-  ( j = J -> ( E ` ( S ` j ) ) = ( E ` ( S ` J ) ) ) | 
						
							| 106 | 105 | fveq2d |  |-  ( j = J -> ( Z ` ( E ` ( S ` j ) ) ) = ( Z ` ( E ` ( S ` J ) ) ) ) | 
						
							| 107 | 103 106 | oveq12d |  |-  ( j = J -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) ) | 
						
							| 108 | 102 104 | oveq12d |  |-  ( j = J -> ( ( S ` ( j + 1 ) ) - ( S ` j ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) | 
						
							| 109 | 107 108 | eqeq12d |  |-  ( j = J -> ( ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) <-> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 110 | 100 109 | imbi12d |  |-  ( j = J -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) ) <-> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) ) | 
						
							| 111 | 2 | oveq2i |  |-  ( k x. T ) = ( k x. ( B - A ) ) | 
						
							| 112 | 111 | oveq2i |  |-  ( y + ( k x. T ) ) = ( y + ( k x. ( B - A ) ) ) | 
						
							| 113 | 112 | eleq1i |  |-  ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( k x. ( B - A ) ) ) e. ran Q ) | 
						
							| 114 | 113 | rexbii |  |-  ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q ) | 
						
							| 115 | 114 | rgenw |  |-  A. y e. ( C [,] D ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q ) | 
						
							| 116 |  | rabbi |  |-  ( A. y e. ( C [,] D ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q ) <-> { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) | 
						
							| 117 | 115 116 | mpbi |  |-  { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } | 
						
							| 118 | 117 | uneq2i |  |-  ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) | 
						
							| 119 | 118 | fveq2i |  |-  ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) = ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) | 
						
							| 120 | 119 | oveq1i |  |-  ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) - 1 ) | 
						
							| 121 | 43 120 | eqtri |  |-  N = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) - 1 ) | 
						
							| 122 |  | isoeq5 |  |-  ( ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) ) | 
						
							| 123 | 118 122 | ax-mp |  |-  ( f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) | 
						
							| 124 | 123 | iotabii |  |-  ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) | 
						
							| 125 | 47 124 | eqtri |  |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) | 
						
							| 126 |  | eqid |  |-  ( ( S ` j ) + ( B - ( E ` ( S ` j ) ) ) ) = ( ( S ` j ) + ( B - ( E ` ( S ` j ) ) ) ) | 
						
							| 127 | 1 2 3 4 9 10 11 121 125 15 16 126 | fourierdlem65 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) ) | 
						
							| 128 | 110 127 | vtoclg |  |-  ( J e. ( 0 ..^ N ) -> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 129 | 128 | anabsi7 |  |-  ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) | 
						
							| 130 | 17 129 | mpdan |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) | 
						
							| 131 | 98 130 | breqtrrd |  |-  ( ph -> 0 < ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) ) | 
						
							| 132 | 89 83 | posdifd |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) <-> 0 < ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) ) ) | 
						
							| 133 | 131 132 | mpbird |  |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 134 | 106 103 | oveq12d |  |-  ( j = J -> ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 135 | 104 | fveq2d |  |-  ( j = J -> ( I ` ( S ` j ) ) = ( I ` ( S ` J ) ) ) | 
						
							| 136 | 135 | fveq2d |  |-  ( j = J -> ( Q ` ( I ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` J ) ) ) ) | 
						
							| 137 | 135 | oveq1d |  |-  ( j = J -> ( ( I ` ( S ` j ) ) + 1 ) = ( ( I ` ( S ` J ) ) + 1 ) ) | 
						
							| 138 | 137 | fveq2d |  |-  ( j = J -> ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 139 | 136 138 | oveq12d |  |-  ( j = J -> ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) = ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 140 | 134 139 | sseq12d |  |-  ( j = J -> ( ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) <-> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) | 
						
							| 141 | 100 140 | imbi12d |  |-  ( j = J -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) ) <-> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) ) | 
						
							| 142 | 12 40 | eqtri |  |-  H = ( { C , D } u. { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
							| 143 |  | eqid |  |-  ( ( S ` j ) + if ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) < ( ( Q ` 1 ) - A ) , ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) / 2 ) , ( ( ( Q ` 1 ) - A ) / 2 ) ) ) = ( ( S ` j ) + if ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) < ( ( Q ` 1 ) - A ) , ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) / 2 ) , ( ( ( Q ` 1 ) - A ) / 2 ) ) ) | 
						
							| 144 | 2 1 3 4 9 31 35 11 142 13 14 15 16 143 19 | fourierdlem79 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) ) | 
						
							| 145 | 141 144 | vtoclg |  |-  ( J e. ( 0 ..^ N ) -> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) | 
						
							| 146 | 145 | anabsi7 |  |-  ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 147 | 17 146 | mpdan |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 148 | 63 68 89 83 133 147 | fourierdlem10 |  |-  ( ph -> ( ( Q ` ( I ` ( S ` J ) ) ) <_ ( Z ` ( E ` ( S ` J ) ) ) /\ ( E ` ( S ` ( J + 1 ) ) ) <_ ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 149 | 148 | simpld |  |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) <_ ( Z ` ( E ` ( S ` J ) ) ) ) | 
						
							| 150 | 63 89 83 149 133 | lelttrd |  |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 151 | 150 | adantr |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( I ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 152 | 68 | adantr |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR ) | 
						
							| 153 | 148 | simprd |  |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) <_ ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) <_ ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 155 |  | neqne |  |-  ( -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) -> ( E ` ( S ` ( J + 1 ) ) ) =/= ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 156 | 155 | necomd |  |-  ( -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) =/= ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 157 | 156 | adantl |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) =/= ( E ` ( S ` ( J + 1 ) ) ) ) | 
						
							| 158 | 84 152 154 157 | leneltd |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 159 | 65 70 84 151 158 | eliood |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 160 |  | fvres |  |-  ( ( E ` ( S ` ( J + 1 ) ) ) e. ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) = ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 161 | 159 160 | syl |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) = ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 162 | 161 | eqcomd |  |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 163 | 162 | ifeq2da |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) ) = if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) ) | 
						
							| 164 |  | fdm |  |-  ( F : RR --> CC -> dom F = RR ) | 
						
							| 165 | 5 164 | syl |  |-  ( ph -> dom F = RR ) | 
						
							| 166 | 165 | feq2d |  |-  ( ph -> ( F : dom F --> CC <-> F : RR --> CC ) ) | 
						
							| 167 | 5 166 | mpbird |  |-  ( ph -> F : dom F --> CC ) | 
						
							| 168 |  | ioosscn |  |-  ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ CC | 
						
							| 169 | 168 | a1i |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ CC ) | 
						
							| 170 |  | ioossre |  |-  ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ RR | 
						
							| 171 | 170 165 | sseqtrrid |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ dom F ) | 
						
							| 172 | 81 83 | resubcld |  |-  ( ph -> ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) e. RR ) | 
						
							| 173 | 18 172 | eqeltrid |  |-  ( ph -> U e. RR ) | 
						
							| 174 | 173 | recnd |  |-  ( ph -> U e. CC ) | 
						
							| 175 |  | eqid |  |-  { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } = { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } | 
						
							| 176 | 89 83 173 | iooshift |  |-  ( ph -> ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) | 
						
							| 177 |  | ioossre |  |-  ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) C_ RR | 
						
							| 178 | 177 165 | sseqtrrid |  |-  ( ph -> ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) C_ dom F ) | 
						
							| 179 | 176 178 | eqsstrrd |  |-  ( ph -> { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } C_ dom F ) | 
						
							| 180 |  | elioore |  |-  ( y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -> y e. RR ) | 
						
							| 181 | 74 72 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 182 | 2 181 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 183 | 182 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 184 | 72 74 | posdifd |  |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) ) | 
						
							| 185 | 77 184 | mpbid |  |-  ( ph -> 0 < ( B - A ) ) | 
						
							| 186 | 185 2 | breqtrrdi |  |-  ( ph -> 0 < T ) | 
						
							| 187 | 186 | gt0ne0d |  |-  ( ph -> T =/= 0 ) | 
						
							| 188 | 174 183 187 | divcan1d |  |-  ( ph -> ( ( U / T ) x. T ) = U ) | 
						
							| 189 | 188 | eqcomd |  |-  ( ph -> U = ( ( U / T ) x. T ) ) | 
						
							| 190 | 189 | oveq2d |  |-  ( ph -> ( y + U ) = ( y + ( ( U / T ) x. T ) ) ) | 
						
							| 191 | 190 | adantr |  |-  ( ( ph /\ y e. RR ) -> ( y + U ) = ( y + ( ( U / T ) x. T ) ) ) | 
						
							| 192 | 191 | fveq2d |  |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + U ) ) = ( F ` ( y + ( ( U / T ) x. T ) ) ) ) | 
						
							| 193 | 5 | adantr |  |-  ( ( ph /\ y e. RR ) -> F : RR --> CC ) | 
						
							| 194 | 182 | adantr |  |-  ( ( ph /\ y e. RR ) -> T e. RR ) | 
						
							| 195 | 83 | recnd |  |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. CC ) | 
						
							| 196 | 81 | recnd |  |-  ( ph -> ( S ` ( J + 1 ) ) e. CC ) | 
						
							| 197 | 195 196 | negsubdi2d |  |-  ( ph -> -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 198 | 197 | eqcomd |  |-  ( ph -> ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) ) | 
						
							| 199 | 198 | oveq1d |  |-  ( ph -> ( ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) / T ) = ( -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) ) | 
						
							| 200 | 18 | oveq1i |  |-  ( U / T ) = ( ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) / T ) | 
						
							| 201 | 200 | a1i |  |-  ( ph -> ( U / T ) = ( ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) / T ) ) | 
						
							| 202 | 15 | a1i |  |-  ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) | 
						
							| 203 |  | id |  |-  ( x = ( S ` ( J + 1 ) ) -> x = ( S ` ( J + 1 ) ) ) | 
						
							| 204 |  | oveq2 |  |-  ( x = ( S ` ( J + 1 ) ) -> ( B - x ) = ( B - ( S ` ( J + 1 ) ) ) ) | 
						
							| 205 | 204 | oveq1d |  |-  ( x = ( S ` ( J + 1 ) ) -> ( ( B - x ) / T ) = ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) | 
						
							| 206 | 205 | fveq2d |  |-  ( x = ( S ` ( J + 1 ) ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) ) | 
						
							| 207 | 206 | oveq1d |  |-  ( x = ( S ` ( J + 1 ) ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) | 
						
							| 208 | 203 207 | oveq12d |  |-  ( x = ( S ` ( J + 1 ) ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) ) | 
						
							| 209 | 208 | adantl |  |-  ( ( ph /\ x = ( S ` ( J + 1 ) ) ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) ) | 
						
							| 210 | 74 81 | resubcld |  |-  ( ph -> ( B - ( S ` ( J + 1 ) ) ) e. RR ) | 
						
							| 211 | 210 182 187 | redivcld |  |-  ( ph -> ( ( B - ( S ` ( J + 1 ) ) ) / T ) e. RR ) | 
						
							| 212 | 211 | flcld |  |-  ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. ZZ ) | 
						
							| 213 | 212 | zred |  |-  ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. RR ) | 
						
							| 214 | 213 182 | remulcld |  |-  ( ph -> ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) e. RR ) | 
						
							| 215 | 81 214 | readdcld |  |-  ( ph -> ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) e. RR ) | 
						
							| 216 | 202 209 81 215 | fvmptd |  |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) ) | 
						
							| 217 | 216 | oveq1d |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) - ( S ` ( J + 1 ) ) ) ) | 
						
							| 218 | 212 | zcnd |  |-  ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. CC ) | 
						
							| 219 | 218 183 | mulcld |  |-  ( ph -> ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) e. CC ) | 
						
							| 220 | 196 219 | pncan2d |  |-  ( ph -> ( ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) - ( S ` ( J + 1 ) ) ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) | 
						
							| 221 | 217 220 | eqtrd |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) | 
						
							| 222 | 221 219 | eqeltrd |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) e. CC ) | 
						
							| 223 | 222 183 187 | divnegd |  |-  ( ph -> -u ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) ) | 
						
							| 224 | 199 201 223 | 3eqtr4d |  |-  ( ph -> ( U / T ) = -u ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) ) | 
						
							| 225 | 221 | oveq1d |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) / T ) ) | 
						
							| 226 | 218 183 187 | divcan4d |  |-  ( ph -> ( ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) ) | 
						
							| 227 | 225 226 | eqtrd |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) ) | 
						
							| 228 | 227 212 | eqeltrd |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) e. ZZ ) | 
						
							| 229 | 228 | znegcld |  |-  ( ph -> -u ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) e. ZZ ) | 
						
							| 230 | 224 229 | eqeltrd |  |-  ( ph -> ( U / T ) e. ZZ ) | 
						
							| 231 | 230 | adantr |  |-  ( ( ph /\ y e. RR ) -> ( U / T ) e. ZZ ) | 
						
							| 232 |  | simpr |  |-  ( ( ph /\ y e. RR ) -> y e. RR ) | 
						
							| 233 | 6 | adantlr |  |-  ( ( ( ph /\ y e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 234 | 193 194 231 232 233 | fperiodmul |  |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + ( ( U / T ) x. T ) ) ) = ( F ` y ) ) | 
						
							| 235 | 192 234 | eqtrd |  |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + U ) ) = ( F ` y ) ) | 
						
							| 236 | 180 235 | sylan2 |  |-  ( ( ph /\ y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) -> ( F ` ( y + U ) ) = ( F ` y ) ) | 
						
							| 237 | 23 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 238 |  | fveq2 |  |-  ( i = ( I ` ( S ` J ) ) -> ( Q ` i ) = ( Q ` ( I ` ( S ` J ) ) ) ) | 
						
							| 239 |  | oveq1 |  |-  ( i = ( I ` ( S ` J ) ) -> ( i + 1 ) = ( ( I ` ( S ` J ) ) + 1 ) ) | 
						
							| 240 | 239 | fveq2d |  |-  ( i = ( I ` ( S ` J ) ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 241 | 238 240 | breq12d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` ( I ` ( S ` J ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 242 | 241 | rspccva |  |-  ( ( A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( Q ` ( I ` ( S ` J ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 243 | 237 61 242 | syl2anc |  |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 244 | 61 | ancli |  |-  ( ph -> ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) | 
						
							| 245 |  | eleq1 |  |-  ( i = ( I ` ( S ` J ) ) -> ( i e. ( 0 ..^ M ) <-> ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) | 
						
							| 246 | 245 | anbi2d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) ) | 
						
							| 247 | 238 240 | oveq12d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 248 | 247 | reseq2d |  |-  ( i = ( I ` ( S ` J ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) | 
						
							| 249 | 247 | oveq1d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) | 
						
							| 250 | 248 249 | eleq12d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) | 
						
							| 251 | 246 250 | imbi12d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) ) | 
						
							| 252 | 251 7 | vtoclg |  |-  ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) | 
						
							| 253 | 61 244 252 | sylc |  |-  ( ph -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) | 
						
							| 254 |  | nfv |  |-  F/ i ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) | 
						
							| 255 |  | nfmpt1 |  |-  F/_ i ( i e. ( 0 ..^ M ) |-> L ) | 
						
							| 256 | 20 255 | nfcxfr |  |-  F/_ i W | 
						
							| 257 |  | nfcv |  |-  F/_ i ( I ` ( S ` J ) ) | 
						
							| 258 | 256 257 | nffv |  |-  F/_ i ( W ` ( I ` ( S ` J ) ) ) | 
						
							| 259 | 258 | nfel1 |  |-  F/ i ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) | 
						
							| 260 | 254 259 | nfim |  |-  F/ i ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 261 | 246 | biimpar |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( ph /\ i e. ( 0 ..^ M ) ) ) | 
						
							| 262 | 261 | 3adant2 |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( ph /\ i e. ( 0 ..^ M ) ) ) | 
						
							| 263 | 262 8 | syl |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 264 |  | fveq2 |  |-  ( i = ( I ` ( S ` J ) ) -> ( W ` i ) = ( W ` ( I ` ( S ` J ) ) ) ) | 
						
							| 265 | 264 | eqcomd |  |-  ( i = ( I ` ( S ` J ) ) -> ( W ` ( I ` ( S ` J ) ) ) = ( W ` i ) ) | 
						
							| 266 | 265 | adantr |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) = ( W ` i ) ) | 
						
							| 267 | 261 | simprd |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 268 |  | elex |  |-  ( L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) -> L e. _V ) | 
						
							| 269 | 261 8 268 | 3syl |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> L e. _V ) | 
						
							| 270 | 20 | fvmpt2 |  |-  ( ( i e. ( 0 ..^ M ) /\ L e. _V ) -> ( W ` i ) = L ) | 
						
							| 271 | 267 269 270 | syl2anc |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` i ) = L ) | 
						
							| 272 | 266 271 | eqtrd |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) = L ) | 
						
							| 273 | 272 | 3adant2 |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) = L ) | 
						
							| 274 | 248 240 | oveq12d |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 275 | 274 | eqcomd |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 276 | 275 | 3ad2ant1 |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 277 | 263 273 276 | 3eltr4d |  |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 278 | 277 | 3exp |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) ) | 
						
							| 279 | 8 | 2a1i |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 280 | 278 279 | impbid |  |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) <-> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) ) | 
						
							| 281 | 260 280 8 | vtoclg1f |  |-  ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) | 
						
							| 282 | 61 244 281 | sylc |  |-  ( ph -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) | 
						
							| 283 |  | eqid |  |-  if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) = if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 284 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) u. { ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) u. { ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) } ) ) | 
						
							| 285 | 63 68 243 253 282 89 83 133 147 283 284 | fourierdlem33 |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 286 | 147 | resabs1d |  |-  ( ph -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( F |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ) | 
						
							| 287 | 286 | oveq1d |  |-  ( ph -> ( ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( F |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 288 | 285 287 | eleqtrd |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 289 | 167 169 171 174 175 179 236 288 | limcperiod |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) ) | 
						
							| 290 | 18 | oveq2i |  |-  ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( ( E ` ( S ` ( J + 1 ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 291 | 195 196 | pncan3d |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( S ` ( J + 1 ) ) ) | 
						
							| 292 | 290 291 | eqtrid |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( S ` ( J + 1 ) ) ) | 
						
							| 293 | 292 | oveq2d |  |-  ( ph -> ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
							| 294 | 289 293 | eleqtrd |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
							| 295 | 18 | oveq2i |  |-  ( ( Z ` ( E ` ( S ` J ) ) ) + U ) = ( ( Z ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 296 | 295 | a1i |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) + U ) = ( ( Z ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) | 
						
							| 297 | 9 31 | iccssred |  |-  ( ph -> ( C [,] D ) C_ RR ) | 
						
							| 298 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 299 | 297 298 | sstrdi |  |-  ( ph -> ( C [,] D ) C_ CC ) | 
						
							| 300 | 11 51 50 | fourierdlem15 |  |-  ( ph -> S : ( 0 ... N ) --> ( C [,] D ) ) | 
						
							| 301 | 300 59 | ffvelcdmd |  |-  ( ph -> ( S ` J ) e. ( C [,] D ) ) | 
						
							| 302 | 299 301 | sseldd |  |-  ( ph -> ( S ` J ) e. CC ) | 
						
							| 303 | 196 302 | subcld |  |-  ( ph -> ( ( S ` ( J + 1 ) ) - ( S ` J ) ) e. CC ) | 
						
							| 304 | 89 | recnd |  |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) e. CC ) | 
						
							| 305 | 195 303 304 | subsub23d |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( Z ` ( E ` ( S ` J ) ) ) <-> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 306 | 130 305 | mpbird |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( Z ` ( E ` ( S ` J ) ) ) ) | 
						
							| 307 | 306 | eqcomd |  |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 308 | 307 | oveq1d |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) | 
						
							| 309 | 195 303 | subcld |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) e. CC ) | 
						
							| 310 | 309 196 195 | addsub12d |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) | 
						
							| 311 | 195 303 195 | sub32d |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 312 | 195 | subidd |  |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = 0 ) | 
						
							| 313 | 312 | oveq1d |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) | 
						
							| 314 |  | df-neg |  |-  -u ( ( S ` ( J + 1 ) ) - ( S ` J ) ) = ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) | 
						
							| 315 | 196 302 | negsubdi2d |  |-  ( ph -> -u ( ( S ` ( J + 1 ) ) - ( S ` J ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) | 
						
							| 316 | 314 315 | eqtr3id |  |-  ( ph -> ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) | 
						
							| 317 | 311 313 316 | 3eqtrd |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) | 
						
							| 318 | 317 | oveq2d |  |-  ( ph -> ( ( S ` ( J + 1 ) ) + ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 319 | 196 302 | pncan3d |  |-  ( ph -> ( ( S ` ( J + 1 ) ) + ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) = ( S ` J ) ) | 
						
							| 320 | 310 318 319 | 3eqtrd |  |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( S ` J ) ) | 
						
							| 321 | 296 308 320 | 3eqtrd |  |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) + U ) = ( S ` J ) ) | 
						
							| 322 | 321 292 | oveq12d |  |-  ( ph -> ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) | 
						
							| 323 | 176 322 | eqtr3d |  |-  ( ph -> { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } = ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) | 
						
							| 324 | 323 | reseq2d |  |-  ( ph -> ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) = ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) ) | 
						
							| 325 | 324 | oveq1d |  |-  ( ph -> ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( S ` ( J + 1 ) ) ) = ( ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
							| 326 | 294 325 | eleqtrd |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
							| 327 | 163 326 | eqeltrd |  |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) limCC ( S ` ( J + 1 ) ) ) ) |