| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem91.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem91.t | ⊢ 𝑇  =  ( 𝐵  −  𝐴 ) | 
						
							| 3 |  | fourierdlem91.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 4 |  | fourierdlem91.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 5 |  | fourierdlem91.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 6 |  | fourierdlem91.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 |  | fourierdlem91.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 8 |  | fourierdlem91.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 9 |  | fourierdlem91.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 10 |  | fourierdlem91.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝐶 (,) +∞ ) ) | 
						
							| 11 |  | fourierdlem91.o | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐶  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 12 |  | fourierdlem91.h | ⊢ 𝐻  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 13 |  | fourierdlem91.n | ⊢ 𝑁  =  ( ( ♯ ‘ 𝐻 )  −  1 ) | 
						
							| 14 |  | fourierdlem91.s | ⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) ) | 
						
							| 15 |  | fourierdlem91.e | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 16 |  | fourierdlem91.J | ⊢ 𝑍  =  ( 𝑦  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) ) | 
						
							| 17 |  | fourierdlem91.17 | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 18 |  | fourierdlem91.u | ⊢ 𝑈  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 19 |  | fourierdlem91.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 20 |  | fourierdlem91.w | ⊢ 𝑊  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) | 
						
							| 21 | 1 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 22 | 3 21 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 23 | 4 22 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 25 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 27 |  | fzossfz | ⊢ ( 0 ..^ 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 28 | 1 3 4 2 15 16 19 | fourierdlem37 | ⊢ ( 𝜑  →  ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 )  ∧  ( 𝑥  ∈  ℝ  →  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  )  ∈  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } ) ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( 𝜑  →  𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ) | 
						
							| 30 |  | elioore | ⊢ ( 𝐷  ∈  ( 𝐶 (,) +∞ )  →  𝐷  ∈  ℝ ) | 
						
							| 31 | 10 30 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 32 |  | elioo4g | ⊢ ( 𝐷  ∈  ( 𝐶 (,) +∞ )  ↔  ( ( 𝐶  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐷  ∈  ℝ )  ∧  ( 𝐶  <  𝐷  ∧  𝐷  <  +∞ ) ) ) | 
						
							| 33 | 10 32 | sylib | ⊢ ( 𝜑  →  ( ( 𝐶  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐷  ∈  ℝ )  ∧  ( 𝐶  <  𝐷  ∧  𝐷  <  +∞ ) ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( 𝜑  →  ( 𝐶  <  𝐷  ∧  𝐷  <  +∞ ) ) | 
						
							| 35 | 34 | simpld | ⊢ ( 𝜑  →  𝐶  <  𝐷 ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 38 | 37 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 39 | 38 | cbvrabv | ⊢ { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑥  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 40 | 39 | uneq2i | ⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑥  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 41 | 12 | fveq2i | ⊢ ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) | 
						
							| 42 | 41 | oveq1i | ⊢ ( ( ♯ ‘ 𝐻 )  −  1 )  =  ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 43 | 13 42 | eqtri | ⊢ 𝑁  =  ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 44 |  | isoeq5 | ⊢ ( 𝐻  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  →  ( 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 45 | 12 44 | ax-mp | ⊢ ( 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 46 | 45 | iotabii | ⊢ ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 47 | 14 46 | eqtri | ⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 48 | 2 1 3 4 9 31 35 11 40 43 47 | fourierdlem54 | ⊢ ( 𝜑  →  ( ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) )  ∧  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 49 | 48 | simpld | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 50 | 49 | simprd | ⊢ ( 𝜑  →  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) | 
						
							| 51 | 49 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 52 | 11 | fourierdlem2 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑆  ∈  ( 𝑂 ‘ 𝑁 )  ↔  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑁 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  𝐶  ∧  ( 𝑆 ‘ 𝑁 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( 𝑂 ‘ 𝑁 )  ↔  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑁 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  𝐶  ∧  ( 𝑆 ‘ 𝑁 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 54 | 50 53 | mpbid | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑁 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  𝐶  ∧  ( 𝑆 ‘ 𝑁 )  =  𝐷 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 55 | 54 | simpld | ⊢ ( 𝜑  →  𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑁 ) ) ) | 
						
							| 56 |  | elmapi | ⊢ ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑁 ) )  →  𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ ) | 
						
							| 58 |  | elfzofz | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  𝐽  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 59 | 17 58 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 60 | 57 59 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐽 )  ∈  ℝ ) | 
						
							| 61 | 29 60 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 62 | 27 61 | sselid | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 63 | 26 62 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ℝ ) | 
						
							| 64 | 63 | rexrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ℝ* ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ℝ* ) | 
						
							| 66 |  | fzofzp1 | ⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 )  →  ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 67 | 61 66 | syl | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 68 | 26 67 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 69 | 68 | rexrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  ∈  ℝ* ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  ∈  ℝ* ) | 
						
							| 71 | 1 3 4 | fourierdlem11 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 ) ) | 
						
							| 72 | 71 | simp1d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 73 | 72 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 74 | 71 | simp2d | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 75 |  | iocssre | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 (,] 𝐵 )  ⊆  ℝ ) | 
						
							| 76 | 73 74 75 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,] 𝐵 )  ⊆  ℝ ) | 
						
							| 77 | 71 | simp3d | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 78 | 72 74 77 2 15 | fourierdlem4 | ⊢ ( 𝜑  →  𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) | 
						
							| 79 |  | fzofzp1 | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐽  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 80 | 17 79 | syl | ⊢ ( 𝜑  →  ( 𝐽  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 81 | 57 80 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐽  +  1 ) )  ∈  ℝ ) | 
						
							| 82 | 78 81 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 83 | 76 82 | sseldd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ℝ ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ℝ ) | 
						
							| 85 | 72 74 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 86 | 72 74 77 16 | fourierdlem17 | ⊢ ( 𝜑  →  𝑍 : ( 𝐴 (,] 𝐵 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 87 | 78 60 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 88 | 86 87 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 89 | 85 88 | sseldd | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ℝ ) | 
						
							| 90 | 54 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 91 |  | fveq2 | ⊢ ( 𝑖  =  𝐽  →  ( 𝑆 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝐽 ) ) | 
						
							| 92 |  | oveq1 | ⊢ ( 𝑖  =  𝐽  →  ( 𝑖  +  1 )  =  ( 𝐽  +  1 ) ) | 
						
							| 93 | 92 | fveq2d | ⊢ ( 𝑖  =  𝐽  →  ( 𝑆 ‘ ( 𝑖  +  1 ) )  =  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 94 | 91 93 | breq12d | ⊢ ( 𝑖  =  𝐽  →  ( ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑆 ‘ 𝐽 )  <  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 95 | 94 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝑆 ‘ 𝐽 )  <  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 96 | 90 17 95 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐽 )  <  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 97 | 60 81 | posdifd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐽 )  <  ( 𝑆 ‘ ( 𝐽  +  1 ) )  ↔  0  <  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 98 | 96 97 | mpbid | ⊢ ( 𝜑  →  0  <  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 99 |  | eleq1 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑗  ∈  ( 0 ..^ 𝑁 )  ↔  𝐽  ∈  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 100 | 99 | anbi2d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ↔  ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 101 |  | oveq1 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑗  +  1 )  =  ( 𝐽  +  1 ) ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑆 ‘ ( 𝑗  +  1 ) )  =  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 104 |  | fveq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝑆 ‘ 𝐽 ) ) | 
						
							| 105 | 104 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) )  =  ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 106 | 105 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  =  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 107 | 103 106 | oveq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) )  =  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) | 
						
							| 108 | 102 104 | oveq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 109 | 107 108 | eqeq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) )  ↔  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 110 | 100 109 | imbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) ) )  ↔  ( ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) ) | 
						
							| 111 | 2 | oveq2i | ⊢ ( 𝑘  ·  𝑇 )  =  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) | 
						
							| 112 | 111 | oveq2i | ⊢ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 113 | 112 | eleq1i | ⊢ ( ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 ) | 
						
							| 114 | 113 | rexbii | ⊢ ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 ) | 
						
							| 115 | 114 | rgenw | ⊢ ∀ 𝑦  ∈  ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 ) | 
						
							| 116 |  | rabbi | ⊢ ( ∀ 𝑦  ∈  ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 )  ↔  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) | 
						
							| 117 | 115 116 | mpbi | ⊢ { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } | 
						
							| 118 | 117 | uneq2i | ⊢ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) | 
						
							| 119 | 118 | fveq2i | ⊢ ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  =  ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) ) | 
						
							| 120 | 119 | oveq1i | ⊢ ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  =  ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 121 | 43 120 | eqtri | ⊢ 𝑁  =  ( ( ♯ ‘ ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 122 |  | isoeq5 | ⊢ ( ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } )  →  ( 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 123 | 118 122 | ax-mp | ⊢ ( 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 124 | 123 | iotabii | ⊢ ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 125 | 47 124 | eqtri | ⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  ( { 𝐶 ,  𝐷 }  ∪  { 𝑦  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  ( 𝐵  −  𝐴 ) ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 126 |  | eqid | ⊢ ( ( 𝑆 ‘ 𝑗 )  +  ( 𝐵  −  ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) )  =  ( ( 𝑆 ‘ 𝑗 )  +  ( 𝐵  −  ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) | 
						
							| 127 | 1 2 3 4 9 10 11 121 125 15 16 126 | fourierdlem65 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 128 | 110 127 | vtoclg | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 129 | 128 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 130 | 17 129 | mpdan | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 131 | 98 130 | breqtrrd | ⊢ ( 𝜑  →  0  <  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) | 
						
							| 132 | 89 83 | posdifd | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ↔  0  <  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) ) ) | 
						
							| 133 | 131 132 | mpbird | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 134 | 106 103 | oveq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  =  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 135 | 104 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 136 | 135 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) )  =  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 137 | 135 | oveq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 )  =  ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) | 
						
							| 138 | 137 | fveq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 139 | 136 138 | oveq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) )  =  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 140 | 134 139 | sseq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) )  ↔  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) | 
						
							| 141 | 100 140 | imbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) ) )  ↔  ( ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) ) | 
						
							| 142 | 12 40 | eqtri | ⊢ 𝐻  =  ( { 𝐶 ,  𝐷 }  ∪  { 𝑥  ∈  ( 𝐶 [,] 𝐷 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 143 |  | eqid | ⊢ ( ( 𝑆 ‘ 𝑗 )  +  if ( ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) )  <  ( ( 𝑄 ‘ 1 )  −  𝐴 ) ,  ( ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) )  /  2 ) ,  ( ( ( 𝑄 ‘ 1 )  −  𝐴 )  /  2 ) ) )  =  ( ( 𝑆 ‘ 𝑗 )  +  if ( ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) )  <  ( ( 𝑄 ‘ 1 )  −  𝐴 ) ,  ( ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝑆 ‘ 𝑗 ) )  /  2 ) ,  ( ( ( 𝑄 ‘ 1 )  −  𝐴 )  /  2 ) ) ) | 
						
							| 144 | 2 1 3 4 9 31 35 11 142 13 14 15 16 143 19 | fourierdlem79 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) ) ) | 
						
							| 145 | 141 144 | vtoclg | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) | 
						
							| 146 | 145 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 147 | 17 146 | mpdan | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 148 | 63 68 89 83 133 147 | fourierdlem10 | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∧  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ≤  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 149 | 148 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 150 | 63 89 83 149 133 | lelttrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 152 | 68 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 153 | 148 | simprd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ≤  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ≤  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 155 |  | neqne | ⊢ ( ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ≠  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 156 | 155 | necomd | ⊢ ( ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  ≠  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 157 | 156 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) )  ≠  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 158 | 84 152 154 157 | leneltd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  <  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 159 | 65 70 84 151 158 | eliood | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 160 |  | fvres | ⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 161 | 159 160 | syl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 162 | 161 | eqcomd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  →  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 163 | 162 | ifeq2da | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) ) | 
						
							| 164 |  | fdm | ⊢ ( 𝐹 : ℝ ⟶ ℂ  →  dom  𝐹  =  ℝ ) | 
						
							| 165 | 5 164 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  ℝ ) | 
						
							| 166 | 165 | feq2d | ⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ↔  𝐹 : ℝ ⟶ ℂ ) ) | 
						
							| 167 | 5 166 | mpbird | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 168 |  | ioosscn | ⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ℂ | 
						
							| 169 | 168 | a1i | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ℂ ) | 
						
							| 170 |  | ioossre | ⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  ℝ | 
						
							| 171 | 170 165 | sseqtrrid | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ⊆  dom  𝐹 ) | 
						
							| 172 | 81 83 | resubcld | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 173 | 18 172 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 174 | 173 | recnd | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 175 |  | eqid | ⊢ { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) }  =  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } | 
						
							| 176 | 89 83 173 | iooshift | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 ) )  =  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } ) | 
						
							| 177 |  | ioossre | ⊢ ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 ) )  ⊆  ℝ | 
						
							| 178 | 177 165 | sseqtrrid | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 ) )  ⊆  dom  𝐹 ) | 
						
							| 179 | 176 178 | eqsstrrd | ⊢ ( 𝜑  →  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) }  ⊆  dom  𝐹 ) | 
						
							| 180 |  | elioore | ⊢ ( 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 181 | 74 72 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 182 | 2 181 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 183 | 182 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 184 | 72 74 | posdifd | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  0  <  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 185 | 77 184 | mpbid | ⊢ ( 𝜑  →  0  <  ( 𝐵  −  𝐴 ) ) | 
						
							| 186 | 185 2 | breqtrrdi | ⊢ ( 𝜑  →  0  <  𝑇 ) | 
						
							| 187 | 186 | gt0ne0d | ⊢ ( 𝜑  →  𝑇  ≠  0 ) | 
						
							| 188 | 174 183 187 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝑈  /  𝑇 )  ·  𝑇 )  =  𝑈 ) | 
						
							| 189 | 188 | eqcomd | ⊢ ( 𝜑  →  𝑈  =  ( ( 𝑈  /  𝑇 )  ·  𝑇 ) ) | 
						
							| 190 | 189 | oveq2d | ⊢ ( 𝜑  →  ( 𝑦  +  𝑈 )  =  ( 𝑦  +  ( ( 𝑈  /  𝑇 )  ·  𝑇 ) ) ) | 
						
							| 191 | 190 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  +  𝑈 )  =  ( 𝑦  +  ( ( 𝑈  /  𝑇 )  ·  𝑇 ) ) ) | 
						
							| 192 | 191 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑈 ) )  =  ( 𝐹 ‘ ( 𝑦  +  ( ( 𝑈  /  𝑇 )  ·  𝑇 ) ) ) ) | 
						
							| 193 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 194 | 182 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 195 | 83 | recnd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ℂ ) | 
						
							| 196 | 81 | recnd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐽  +  1 ) )  ∈  ℂ ) | 
						
							| 197 | 195 196 | negsubdi2d | ⊢ ( 𝜑  →  - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 198 | 197 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 199 | 198 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  /  𝑇 )  =  ( - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) | 
						
							| 200 | 18 | oveq1i | ⊢ ( 𝑈  /  𝑇 )  =  ( ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  /  𝑇 ) | 
						
							| 201 | 200 | a1i | ⊢ ( 𝜑  →  ( 𝑈  /  𝑇 )  =  ( ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  /  𝑇 ) ) | 
						
							| 202 | 15 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) ) | 
						
							| 203 |  | id | ⊢ ( 𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) )  →  𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 204 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) )  →  ( 𝐵  −  𝑥 )  =  ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 205 | 204 | oveq1d | ⊢ ( 𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) )  →  ( ( 𝐵  −  𝑥 )  /  𝑇 )  =  ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) | 
						
							| 206 | 205 | fveq2d | ⊢ ( 𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) )  →  ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) ) | 
						
							| 207 | 206 | oveq1d | ⊢ ( 𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) )  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 208 | 203 207 | oveq12d | ⊢ ( 𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) )  →  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 209 | 208 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  →  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 210 | 74 81 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ℝ ) | 
						
							| 211 | 210 182 187 | redivcld | ⊢ ( 𝜑  →  ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 )  ∈  ℝ ) | 
						
							| 212 | 211 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ∈  ℤ ) | 
						
							| 213 | 212 | zred | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ∈  ℝ ) | 
						
							| 214 | 213 182 | remulcld | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 )  ∈  ℝ ) | 
						
							| 215 | 81 214 | readdcld | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) )  ∈  ℝ ) | 
						
							| 216 | 202 209 81 215 | fvmptd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 217 | 216 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 218 | 212 | zcnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ∈  ℂ ) | 
						
							| 219 | 218 183 | mulcld | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 )  ∈  ℂ ) | 
						
							| 220 | 196 219 | pncan2d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 221 | 217 220 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 222 | 221 219 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  ∈  ℂ ) | 
						
							| 223 | 222 183 187 | divnegd | ⊢ ( 𝜑  →  - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 )  =  ( - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) | 
						
							| 224 | 199 201 223 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑈  /  𝑇 )  =  - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) | 
						
							| 225 | 221 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 )  =  ( ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 )  /  𝑇 ) ) | 
						
							| 226 | 218 183 187 | divcan4d | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) )  ·  𝑇 )  /  𝑇 )  =  ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) ) | 
						
							| 227 | 225 226 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 )  =  ( ⌊ ‘ ( ( 𝐵  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 ) ) ) | 
						
							| 228 | 227 212 | eqeltrd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 )  ∈  ℤ ) | 
						
							| 229 | 228 | znegcld | ⊢ ( 𝜑  →  - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  /  𝑇 )  ∈  ℤ ) | 
						
							| 230 | 224 229 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑈  /  𝑇 )  ∈  ℤ ) | 
						
							| 231 | 230 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑈  /  𝑇 )  ∈  ℤ ) | 
						
							| 232 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 233 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 234 | 193 194 231 232 233 | fperiodmul | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  ( ( 𝑈  /  𝑇 )  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 235 | 192 234 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑈 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 236 | 180 235 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑈 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 237 | 23 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 238 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 239 |  | oveq1 | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝑖  +  1 )  =  ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) | 
						
							| 240 | 239 | fveq2d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 241 | 238 240 | breq12d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 242 | 241 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 243 | 237 61 242 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  <  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 244 | 61 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 245 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↔  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 246 | 245 | anbi2d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ↔  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) ) ) | 
						
							| 247 | 238 240 | oveq12d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 248 | 247 | reseq2d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) | 
						
							| 249 | 247 | oveq1d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  =  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 250 | 248 249 | eleq12d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  ↔  ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) –cn→ ℂ ) ) ) | 
						
							| 251 | 246 250 | imbi12d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) )  ↔  ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) –cn→ ℂ ) ) ) ) | 
						
							| 252 | 251 7 | vtoclg | ⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 )  →  ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) –cn→ ℂ ) ) ) | 
						
							| 253 | 61 244 252 | sylc | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 254 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 255 |  | nfmpt1 | ⊢ Ⅎ 𝑖 ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) | 
						
							| 256 | 20 255 | nfcxfr | ⊢ Ⅎ 𝑖 𝑊 | 
						
							| 257 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) | 
						
							| 258 | 256 257 | nffv | ⊢ Ⅎ 𝑖 ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 259 | 258 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) | 
						
							| 260 | 254 259 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 261 | 246 | biimpar | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 262 | 261 | 3adant2 | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) ) ) | 
						
							| 263 | 262 8 | syl | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 264 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 265 | 264 | eqcomd | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 266 | 265 | adantr | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 267 | 261 | simprd | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 268 |  | elex | ⊢ ( 𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝐿  ∈  V ) | 
						
							| 269 | 261 8 268 | 3syl | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  𝐿  ∈  V ) | 
						
							| 270 | 20 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝐿  ∈  V )  →  ( 𝑊 ‘ 𝑖 )  =  𝐿 ) | 
						
							| 271 | 267 269 270 | syl2anc | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  𝐿 ) | 
						
							| 272 | 266 271 | eqtrd | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  =  𝐿 ) | 
						
							| 273 | 272 | 3adant2 | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  =  𝐿 ) | 
						
							| 274 | 248 240 | oveq12d | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 275 | 274 | eqcomd | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 276 | 275 | 3ad2ant1 | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 277 | 263 273 276 | 3eltr4d | ⊢ ( ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∧  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 278 | 277 | 3exp | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) ) | 
						
							| 279 | 8 | 2a1i | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  →  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 280 | 278 279 | impbid | ⊢ ( 𝑖  =  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) ) | 
						
							| 281 | 260 280 8 | vtoclg1f | ⊢ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 )  →  ( ( 𝜑  ∧  ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ) | 
						
							| 282 | 61 244 281 | sylc | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) | 
						
							| 283 |  | eqid | ⊢ if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 284 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) } ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) )  ∪  { ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) } ) ) | 
						
							| 285 | 63 68 243 253 282 89 83 133 147 283 284 | fourierdlem33 | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  ∈  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  limℂ  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 286 | 147 | resabs1d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) ) | 
						
							| 287 | 286 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) )  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  limℂ  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  limℂ  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 288 | 285 287 | eleqtrd | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  limℂ  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 289 | 167 169 171 174 175 179 236 288 | limcperiod | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } )  limℂ  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 ) ) ) | 
						
							| 290 | 18 | oveq2i | ⊢ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 )  =  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 291 | 195 196 | pncan3d | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 292 | 290 291 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 )  =  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) | 
						
							| 293 | 292 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } )  limℂ  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 ) )  =  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } )  limℂ  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 294 | 289 293 | eleqtrd | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } )  limℂ  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 295 | 18 | oveq2i | ⊢ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 )  =  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 296 | 295 | a1i | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 )  =  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) ) | 
						
							| 297 | 9 31 | iccssred | ⊢ ( 𝜑  →  ( 𝐶 [,] 𝐷 )  ⊆  ℝ ) | 
						
							| 298 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 299 | 297 298 | sstrdi | ⊢ ( 𝜑  →  ( 𝐶 [,] 𝐷 )  ⊆  ℂ ) | 
						
							| 300 | 11 51 50 | fourierdlem15 | ⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) | 
						
							| 301 | 300 59 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐽 )  ∈  ( 𝐶 [,] 𝐷 ) ) | 
						
							| 302 | 299 301 | sseldd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 303 | 196 302 | subcld | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) )  ∈  ℂ ) | 
						
							| 304 | 89 | recnd | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ∈  ℂ ) | 
						
							| 305 | 195 303 304 | subsub23d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  =  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  ↔  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 306 | 130 305 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  =  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 307 | 306 | eqcomd | ⊢ ( 𝜑  →  ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  =  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 308 | 307 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) ) | 
						
							| 309 | 195 303 | subcld | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  ∈  ℂ ) | 
						
							| 310 | 309 196 195 | addsub12d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) ) | 
						
							| 311 | 195 303 195 | sub32d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 312 | 195 | subidd | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  0 ) | 
						
							| 313 | 312 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  =  ( 0  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) ) | 
						
							| 314 |  | df-neg | ⊢ - ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) )  =  ( 0  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) ) | 
						
							| 315 | 196 302 | negsubdi2d | ⊢ ( 𝜑  →  - ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) )  =  ( ( 𝑆 ‘ 𝐽 )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 316 | 314 315 | eqtr3id | ⊢ ( 𝜑  →  ( 0  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  =  ( ( 𝑆 ‘ 𝐽 )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 317 | 311 313 316 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( ( 𝑆 ‘ 𝐽 )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 318 | 317 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( 𝑆 ‘ 𝐽 )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 319 | 196 302 | pncan3d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  +  ( ( 𝑆 ‘ 𝐽 )  −  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  =  ( 𝑆 ‘ 𝐽 ) ) | 
						
							| 320 | 310 318 319 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  −  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝑆 ‘ 𝐽 ) ) )  +  ( ( 𝑆 ‘ ( 𝐽  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  =  ( 𝑆 ‘ 𝐽 ) ) | 
						
							| 321 | 296 308 320 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 )  =  ( 𝑆 ‘ 𝐽 ) ) | 
						
							| 322 | 321 292 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) )  +  𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  +  𝑈 ) )  =  ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 323 | 176 322 | eqtr3d | ⊢ ( 𝜑  →  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) }  =  ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 324 | 323 | reseq2d | ⊢ ( 𝜑  →  ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } )  =  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) ) | 
						
							| 325 | 324 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) 𝑥  =  ( 𝑦  +  𝑈 ) } )  limℂ  ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 326 | 294 325 | eleqtrd | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( ( 𝐹  ↾  ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) | 
						
							| 327 | 163 326 | eqeltrd | ⊢ ( 𝜑  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) )  +  1 ) ) ,  ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝐽 ) ) ) ,  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝐽 ) (,) ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝐽  +  1 ) ) ) ) |