Metamath Proof Explorer


Theorem fourierdlem91

Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the upper bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem91.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem91.t 𝑇 = ( 𝐵𝐴 )
fourierdlem91.m ( 𝜑𝑀 ∈ ℕ )
fourierdlem91.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
fourierdlem91.f ( 𝜑𝐹 : ℝ ⟶ ℂ )
fourierdlem91.6 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹𝑥 ) )
fourierdlem91.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
fourierdlem91.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
fourierdlem91.c ( 𝜑𝐶 ∈ ℝ )
fourierdlem91.d ( 𝜑𝐷 ∈ ( 𝐶 (,) +∞ ) )
fourierdlem91.o 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem91.h 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } )
fourierdlem91.n 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 )
fourierdlem91.s 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) )
fourierdlem91.e 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
fourierdlem91.J 𝑍 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) )
fourierdlem91.17 ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) )
fourierdlem91.u 𝑈 = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
fourierdlem91.i 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) )
fourierdlem91.w 𝑊 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 )
Assertion fourierdlem91 ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 fourierdlem91.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
2 fourierdlem91.t 𝑇 = ( 𝐵𝐴 )
3 fourierdlem91.m ( 𝜑𝑀 ∈ ℕ )
4 fourierdlem91.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
5 fourierdlem91.f ( 𝜑𝐹 : ℝ ⟶ ℂ )
6 fourierdlem91.6 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹𝑥 ) )
7 fourierdlem91.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
8 fourierdlem91.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
9 fourierdlem91.c ( 𝜑𝐶 ∈ ℝ )
10 fourierdlem91.d ( 𝜑𝐷 ∈ ( 𝐶 (,) +∞ ) )
11 fourierdlem91.o 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
12 fourierdlem91.h 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } )
13 fourierdlem91.n 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 )
14 fourierdlem91.s 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) )
15 fourierdlem91.e 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
16 fourierdlem91.J 𝑍 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) )
17 fourierdlem91.17 ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) )
18 fourierdlem91.u 𝑈 = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
19 fourierdlem91.i 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) )
20 fourierdlem91.w 𝑊 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 )
21 1 fourierdlem2 ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
22 3 21 syl ( 𝜑 → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
23 4 22 mpbid ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
24 23 simpld ( 𝜑𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) )
25 elmapi ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
26 24 25 syl ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
27 fzossfz ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 )
28 1 3 4 2 15 16 19 fourierdlem37 ( 𝜑 → ( 𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) ∧ ( 𝑥 ∈ ℝ → sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸𝑥 ) ) } , ℝ , < ) ∈ { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸𝑥 ) ) } ) ) )
29 28 simpld ( 𝜑𝐼 : ℝ ⟶ ( 0 ..^ 𝑀 ) )
30 elioore ( 𝐷 ∈ ( 𝐶 (,) +∞ ) → 𝐷 ∈ ℝ )
31 10 30 syl ( 𝜑𝐷 ∈ ℝ )
32 elioo4g ( 𝐷 ∈ ( 𝐶 (,) +∞ ) ↔ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ ) ∧ ( 𝐶 < 𝐷𝐷 < +∞ ) ) )
33 10 32 sylib ( 𝜑 → ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ ) ∧ ( 𝐶 < 𝐷𝐷 < +∞ ) ) )
34 33 simprd ( 𝜑 → ( 𝐶 < 𝐷𝐷 < +∞ ) )
35 34 simpld ( 𝜑𝐶 < 𝐷 )
36 oveq1 ( 𝑦 = 𝑥 → ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) )
37 36 eleq1d ( 𝑦 = 𝑥 → ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) )
38 37 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) )
39 38 cbvrabv { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 }
40 39 uneq2i ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } )
41 12 fveq2i ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) )
42 41 oveq1i ( ( ♯ ‘ 𝐻 ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 )
43 13 42 eqtri 𝑁 = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 )
44 isoeq5 ( 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) )
45 12 44 ax-mp ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) )
46 45 iotabii ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) )
47 14 46 eqtri 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) )
48 2 1 3 4 9 31 35 11 40 43 47 fourierdlem54 ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) )
49 48 simpld ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂𝑁 ) ) )
50 49 simprd ( 𝜑𝑆 ∈ ( 𝑂𝑁 ) )
51 49 simpld ( 𝜑𝑁 ∈ ℕ )
52 11 fourierdlem2 ( 𝑁 ∈ ℕ → ( 𝑆 ∈ ( 𝑂𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) )
53 51 52 syl ( 𝜑 → ( 𝑆 ∈ ( 𝑂𝑁 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) )
54 50 53 mpbid ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = 𝐶 ∧ ( 𝑆𝑁 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) )
55 54 simpld ( 𝜑𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) )
56 elmapi ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ )
57 55 56 syl ( 𝜑𝑆 : ( 0 ... 𝑁 ) ⟶ ℝ )
58 elfzofz ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ( 0 ... 𝑁 ) )
59 17 58 syl ( 𝜑𝐽 ∈ ( 0 ... 𝑁 ) )
60 57 59 ffvelrnd ( 𝜑 → ( 𝑆𝐽 ) ∈ ℝ )
61 29 60 ffvelrnd ( 𝜑 → ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) )
62 27 61 sseldi ( 𝜑 → ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ... 𝑀 ) )
63 26 62 ffvelrnd ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ℝ )
64 63 rexrd ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ℝ* )
65 64 adantr ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ℝ* )
66 fzofzp1 ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) )
67 61 66 syl ( 𝜑 → ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ∈ ( 0 ... 𝑀 ) )
68 26 67 ffvelrnd ( 𝜑 → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ∈ ℝ )
69 68 rexrd ( 𝜑 → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ∈ ℝ* )
70 69 adantr ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ∈ ℝ* )
71 1 3 4 fourierdlem11 ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) )
72 71 simp1d ( 𝜑𝐴 ∈ ℝ )
73 72 rexrd ( 𝜑𝐴 ∈ ℝ* )
74 71 simp2d ( 𝜑𝐵 ∈ ℝ )
75 iocssre ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ )
76 73 74 75 syl2anc ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ )
77 71 simp3d ( 𝜑𝐴 < 𝐵 )
78 72 74 77 2 15 fourierdlem4 ( 𝜑𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) )
79 fzofzp1 ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) )
80 17 79 syl ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... 𝑁 ) )
81 57 80 ffvelrnd ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℝ )
82 78 81 ffvelrnd ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ( 𝐴 (,] 𝐵 ) )
83 76 82 sseldd ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ )
84 83 adantr ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ )
85 72 74 iccssred ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
86 72 74 77 16 fourierdlem17 ( 𝜑𝑍 : ( 𝐴 (,] 𝐵 ) ⟶ ( 𝐴 [,] 𝐵 ) )
87 78 60 ffvelrnd ( 𝜑 → ( 𝐸 ‘ ( 𝑆𝐽 ) ) ∈ ( 𝐴 (,] 𝐵 ) )
88 86 87 ffvelrnd ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) )
89 85 88 sseldd ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ∈ ℝ )
90 54 simprrd ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) )
91 fveq2 ( 𝑖 = 𝐽 → ( 𝑆𝑖 ) = ( 𝑆𝐽 ) )
92 oveq1 ( 𝑖 = 𝐽 → ( 𝑖 + 1 ) = ( 𝐽 + 1 ) )
93 92 fveq2d ( 𝑖 = 𝐽 → ( 𝑆 ‘ ( 𝑖 + 1 ) ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
94 91 93 breq12d ( 𝑖 = 𝐽 → ( ( 𝑆𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑆𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
95 94 rspccva ( ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑆𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
96 90 17 95 syl2anc ( 𝜑 → ( 𝑆𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
97 60 81 posdifd ( 𝜑 → ( ( 𝑆𝐽 ) < ( 𝑆 ‘ ( 𝐽 + 1 ) ) ↔ 0 < ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
98 96 97 mpbid ( 𝜑 → 0 < ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) )
99 eleq1 ( 𝑗 = 𝐽 → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↔ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) )
100 99 anbi2d ( 𝑗 = 𝐽 → ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑁 ) ) ↔ ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) ) )
101 oveq1 ( 𝑗 = 𝐽 → ( 𝑗 + 1 ) = ( 𝐽 + 1 ) )
102 101 fveq2d ( 𝑗 = 𝐽 → ( 𝑆 ‘ ( 𝑗 + 1 ) ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
103 102 fveq2d ( 𝑗 = 𝐽 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
104 fveq2 ( 𝑗 = 𝐽 → ( 𝑆𝑗 ) = ( 𝑆𝐽 ) )
105 104 fveq2d ( 𝑗 = 𝐽 → ( 𝐸 ‘ ( 𝑆𝑗 ) ) = ( 𝐸 ‘ ( 𝑆𝐽 ) ) )
106 105 fveq2d ( 𝑗 = 𝐽 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) = ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) )
107 103 106 oveq12d ( 𝑗 = 𝐽 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) )
108 102 104 oveq12d ( 𝑗 = 𝐽 → ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) )
109 107 108 eqeq12d ( 𝑗 = 𝐽 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
110 100 109 imbi12d ( 𝑗 = 𝐽 → ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) ) ↔ ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) ) )
111 2 oveq2i ( 𝑘 · 𝑇 ) = ( 𝑘 · ( 𝐵𝐴 ) )
112 111 oveq2i ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) )
113 112 eleq1i ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 )
114 113 rexbii ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 )
115 114 rgenw 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 )
116 rabbi ( ∀ 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 ) ↔ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } )
117 115 116 mpbi { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 }
118 117 uneq2i ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } )
119 118 fveq2i ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) )
120 119 oveq1i ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 )
121 43 120 eqtri 𝑁 = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 )
122 isoeq5 ( ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) )
123 118 122 ax-mp ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) ) )
124 123 iotabii ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) ) )
125 47 124 eqtri 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵𝐴 ) ) ) ∈ ran 𝑄 } ) ) )
126 eqid ( ( 𝑆𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) ) = ( ( 𝑆𝑗 ) + ( 𝐵 − ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) )
127 1 2 3 4 9 10 11 121 125 15 16 126 fourierdlem65 ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) )
128 110 127 vtoclg ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
129 128 anabsi7 ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) )
130 17 129 mpdan ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) )
131 98 130 breqtrrd ( 𝜑 → 0 < ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) )
132 89 83 posdifd ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ↔ 0 < ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) ) )
133 131 132 mpbird ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
134 106 103 oveq12d ( 𝑗 = 𝐽 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
135 104 fveq2d ( 𝑗 = 𝐽 → ( 𝐼 ‘ ( 𝑆𝑗 ) ) = ( 𝐼 ‘ ( 𝑆𝐽 ) ) )
136 135 fveq2d ( 𝑗 = 𝐽 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) )
137 135 oveq1d ( 𝑗 = 𝐽 → ( ( 𝐼 ‘ ( 𝑆𝑗 ) ) + 1 ) = ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) )
138 137 fveq2d ( 𝑗 = 𝐽 → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝑗 ) ) + 1 ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
139 136 138 oveq12d ( 𝑗 = 𝐽 → ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝑗 ) ) + 1 ) ) ) = ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
140 134 139 sseq12d ( 𝑗 = 𝐽 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝑗 ) ) + 1 ) ) ) ↔ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) )
141 100 140 imbi12d ( 𝑗 = 𝐽 → ( ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝑗 ) ) + 1 ) ) ) ) ↔ ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ) )
142 12 40 eqtri 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } )
143 eqid ( ( 𝑆𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) ) = ( ( 𝑆𝑗 ) + if ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) < ( ( 𝑄 ‘ 1 ) − 𝐴 ) , ( ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝑆𝑗 ) ) / 2 ) , ( ( ( 𝑄 ‘ 1 ) − 𝐴 ) / 2 ) ) )
144 2 1 3 4 9 31 35 11 142 13 14 15 16 143 19 fourierdlem79 ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝑗 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝑗 ) ) + 1 ) ) ) )
145 141 144 vtoclg ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) )
146 145 anabsi7 ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
147 17 146 mpdan ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
148 63 68 89 83 133 147 fourierdlem10 ( 𝜑 → ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ∧ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
149 148 simpld ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) )
150 63 89 83 149 133 lelttrd ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
151 150 adantr ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) < ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
152 68 adantr ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ∈ ℝ )
153 148 simprd ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
154 153 adantr ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≤ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
155 neqne ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ≠ ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
156 155 necomd ( ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ≠ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
157 156 adantl ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ≠ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
158 84 152 154 157 leneltd ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
159 65 70 84 151 158 eliood ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
160 fvres ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
161 159 160 syl ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
162 161 eqcomd ( ( 𝜑 ∧ ¬ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) → ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
163 162 ifeq2da ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) )
164 fdm ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ )
165 5 164 syl ( 𝜑 → dom 𝐹 = ℝ )
166 165 feq2d ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ↔ 𝐹 : ℝ ⟶ ℂ ) )
167 5 166 mpbird ( 𝜑𝐹 : dom 𝐹 ⟶ ℂ )
168 ioosscn ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ℂ
169 168 a1i ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ℂ )
170 ioossre ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ ℝ
171 170 165 sseqtrrid ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ⊆ dom 𝐹 )
172 81 83 resubcld ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ∈ ℝ )
173 18 172 eqeltrid ( 𝜑𝑈 ∈ ℝ )
174 173 recnd ( 𝜑𝑈 ∈ ℂ )
175 eqid { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) }
176 89 83 173 iooshift ( 𝜑 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } )
177 ioossre ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) ⊆ ℝ
178 177 165 sseqtrrid ( 𝜑 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) ⊆ dom 𝐹 )
179 176 178 eqsstrrd ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ⊆ dom 𝐹 )
180 elioore ( 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) → 𝑦 ∈ ℝ )
181 74 72 resubcld ( 𝜑 → ( 𝐵𝐴 ) ∈ ℝ )
182 2 181 eqeltrid ( 𝜑𝑇 ∈ ℝ )
183 182 recnd ( 𝜑𝑇 ∈ ℂ )
184 72 74 posdifd ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )
185 77 184 mpbid ( 𝜑 → 0 < ( 𝐵𝐴 ) )
186 185 2 breqtrrdi ( 𝜑 → 0 < 𝑇 )
187 186 gt0ne0d ( 𝜑𝑇 ≠ 0 )
188 174 183 187 divcan1d ( 𝜑 → ( ( 𝑈 / 𝑇 ) · 𝑇 ) = 𝑈 )
189 188 eqcomd ( 𝜑𝑈 = ( ( 𝑈 / 𝑇 ) · 𝑇 ) )
190 189 oveq2d ( 𝜑 → ( 𝑦 + 𝑈 ) = ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) )
191 190 adantr ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝑦 + 𝑈 ) = ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) )
192 191 fveq2d ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑈 ) ) = ( 𝐹 ‘ ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) )
193 5 adantr ( ( 𝜑𝑦 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ )
194 182 adantr ( ( 𝜑𝑦 ∈ ℝ ) → 𝑇 ∈ ℝ )
195 83 recnd ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ )
196 81 recnd ( 𝜑 → ( 𝑆 ‘ ( 𝐽 + 1 ) ) ∈ ℂ )
197 195 196 negsubdi2d ( 𝜑 → - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
198 197 eqcomd ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
199 198 oveq1d ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) / 𝑇 ) = ( - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) )
200 18 oveq1i ( 𝑈 / 𝑇 ) = ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) / 𝑇 )
201 200 a1i ( 𝜑 → ( 𝑈 / 𝑇 ) = ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) / 𝑇 ) )
202 15 a1i ( 𝜑𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) )
203 id ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
204 oveq2 ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝐵𝑥 ) = ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
205 204 oveq1d ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( 𝐵𝑥 ) / 𝑇 ) = ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) )
206 205 fveq2d ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) )
207 206 oveq1d ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) )
208 203 207 oveq12d ( 𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) )
209 208 adantl ( ( 𝜑𝑥 = ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) )
210 74 81 resubcld ( 𝜑 → ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℝ )
211 210 182 187 redivcld ( 𝜑 → ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℝ )
212 211 flcld ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℤ )
213 212 zred ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℝ )
214 213 182 remulcld ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ )
215 81 214 readdcld ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ )
216 202 209 81 215 fvmptd ( 𝜑 → ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) )
217 216 oveq1d ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
218 212 zcnd ( 𝜑 → ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) ∈ ℂ )
219 218 183 mulcld ( 𝜑 → ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ∈ ℂ )
220 196 219 pncan2d ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) )
221 217 220 eqtrd ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) )
222 221 219 eqeltrd ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ∈ ℂ )
223 222 183 187 divnegd ( 𝜑 → - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) = ( - ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) )
224 199 201 223 3eqtr4d ( 𝜑 → ( 𝑈 / 𝑇 ) = - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) )
225 221 oveq1d ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) = ( ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) )
226 218 183 187 divcan4d ( 𝜑 → ( ( ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) · 𝑇 ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) )
227 225 226 eqtrd ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) = ( ⌊ ‘ ( ( 𝐵 − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ) )
228 227 212 eqeltrd ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℤ )
229 228 znegcld ( 𝜑 → - ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) / 𝑇 ) ∈ ℤ )
230 224 229 eqeltrd ( 𝜑 → ( 𝑈 / 𝑇 ) ∈ ℤ )
231 230 adantr ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝑈 / 𝑇 ) ∈ ℤ )
232 simpr ( ( 𝜑𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ )
233 6 adantlr ( ( ( 𝜑𝑦 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹𝑥 ) )
234 193 194 231 232 233 fperiodmul ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) = ( 𝐹𝑦 ) )
235 192 234 eqtrd ( ( 𝜑𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑈 ) ) = ( 𝐹𝑦 ) )
236 180 235 sylan2 ( ( 𝜑𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑈 ) ) = ( 𝐹𝑦 ) )
237 23 simprrd ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
238 fveq2 ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝑄𝑖 ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) )
239 oveq1 ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝑖 + 1 ) = ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) )
240 239 fveq2d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
241 238 240 breq12d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
242 241 rspccva ( ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
243 237 61 242 syl2anc ( 𝜑 → ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) < ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
244 61 ancli ( 𝜑 → ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) )
245 eleq1 ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) )
246 245 anbi2d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) )
247 238 240 oveq12d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
248 247 reseq2d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) )
249 247 oveq1d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) )
250 248 249 eleq12d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ↔ ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) )
251 246 250 imbi12d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) ↔ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) ) )
252 251 7 vtoclg ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) ) )
253 61 244 252 sylc ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) –cn→ ℂ ) )
254 nfv 𝑖 ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) )
255 nfmpt1 𝑖 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 )
256 20 255 nfcxfr 𝑖 𝑊
257 nfcv 𝑖 ( 𝐼 ‘ ( 𝑆𝐽 ) )
258 256 257 nffv 𝑖 ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) )
259 258 nfel1 𝑖 ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) )
260 254 259 nfim 𝑖 ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
261 246 biimpar ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) )
262 261 3adant2 ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) )
263 262 8 syl ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
264 fveq2 ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝑊𝑖 ) = ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) )
265 264 eqcomd ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) = ( 𝑊𝑖 ) )
266 265 adantr ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) = ( 𝑊𝑖 ) )
267 261 simprd ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) )
268 elex ( 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝐿 ∈ V )
269 261 8 268 3syl ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → 𝐿 ∈ V )
270 20 fvmpt2 ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐿 ∈ V ) → ( 𝑊𝑖 ) = 𝐿 )
271 267 269 270 syl2anc ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑊𝑖 ) = 𝐿 )
272 266 271 eqtrd ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) = 𝐿 )
273 272 3adant2 ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) = 𝐿 )
274 248 240 oveq12d ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
275 274 eqcomd ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
276 275 3ad2ant1 ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
277 263 273 276 3eltr4d ( ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∧ ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
278 277 3exp ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ) )
279 8 2a1i ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) → ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
280 278 279 impbid ( 𝑖 = ( 𝐼 ‘ ( 𝑆𝐽 ) ) → ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ) )
281 260 280 8 vtoclg1f ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 ∧ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) )
282 61 244 281 sylc ( 𝜑 → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) lim ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) )
283 eqid if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
284 eqid ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ∪ { ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ∪ { ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) } ) )
285 63 68 243 253 282 89 83 133 147 283 284 fourierdlem33 ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) lim ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
286 147 resabs1d ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) )
287 286 oveq1d ( 𝜑 → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) lim ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) lim ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
288 285 287 eleqtrd ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) lim ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
289 167 169 171 174 175 179 236 288 limcperiod ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) lim ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) )
290 18 oveq2i ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
291 195 196 pncan3d ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
292 290 291 syl5eq ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) = ( 𝑆 ‘ ( 𝐽 + 1 ) ) )
293 292 oveq2d ( 𝜑 → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) lim ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) = ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
294 289 293 eleqtrd ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
295 18 oveq2i ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) = ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
296 295 a1i ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) = ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) )
297 9 31 iccssred ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ )
298 ax-resscn ℝ ⊆ ℂ
299 297 298 sstrdi ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℂ )
300 11 51 50 fourierdlem15 ( 𝜑𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) )
301 300 59 ffvelrnd ( 𝜑 → ( 𝑆𝐽 ) ∈ ( 𝐶 [,] 𝐷 ) )
302 299 301 sseldd ( 𝜑 → ( 𝑆𝐽 ) ∈ ℂ )
303 196 302 subcld ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ∈ ℂ )
304 89 recnd ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ∈ ℂ )
305 195 303 304 subsub23d ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) = ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ↔ ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
306 130 305 mpbird ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) = ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) )
307 306 eqcomd ( 𝜑 → ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) = ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
308 307 oveq1d ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) )
309 195 303 subcld ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) ∈ ℂ )
310 309 196 195 addsub12d ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) )
311 195 303 195 sub32d ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
312 195 subidd ( 𝜑 → ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = 0 )
313 312 oveq1d ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) = ( 0 − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) )
314 df-neg - ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) = ( 0 − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) )
315 196 302 negsubdi2d ( 𝜑 → - ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) = ( ( 𝑆𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
316 314 315 eqtr3id ( 𝜑 → ( 0 − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) = ( ( 𝑆𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
317 311 313 316 3eqtrd ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( ( 𝑆𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
318 317 oveq2d ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑆𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
319 196 302 pncan3d ( 𝜑 → ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) + ( ( 𝑆𝐽 ) − ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) = ( 𝑆𝐽 ) )
320 310 318 319 3eqtrd ( 𝜑 → ( ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) − ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝑆𝐽 ) ) ) + ( ( 𝑆 ‘ ( 𝐽 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) = ( 𝑆𝐽 ) )
321 296 308 320 3eqtrd ( 𝜑 → ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) = ( 𝑆𝐽 ) )
322 321 292 oveq12d ( 𝜑 → ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) + 𝑈 ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) + 𝑈 ) ) = ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
323 176 322 eqtr3d ( 𝜑 → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } = ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
324 323 reseq2d ( 𝜑 → ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) = ( 𝐹 ↾ ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) )
325 324 oveq1d ( 𝜑 → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) 𝑥 = ( 𝑦 + 𝑈 ) } ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
326 294 325 eleqtrd ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( ( 𝐹 ↾ ( ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) (,) ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) ) ) ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )
327 163 326 eqeltrd ( 𝜑 → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆𝐽 ) ) + 1 ) ) , ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑆𝐽 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆𝐽 ) (,) ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) ) lim ( 𝑆 ‘ ( 𝐽 + 1 ) ) ) )