| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem17.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem17.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem17.altb |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem17.l |
|- L = ( x e. ( A (,] B ) |-> if ( x = B , A , x ) ) |
| 5 |
1
|
leidd |
|- ( ph -> A <_ A ) |
| 6 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
| 7 |
1 2 1 5 6
|
eliccd |
|- ( ph -> A e. ( A [,] B ) ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A (,] B ) ) /\ x = B ) -> A e. ( A [,] B ) ) |
| 9 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
| 10 |
9
|
sseli |
|- ( x e. ( A (,] B ) -> x e. ( A [,] B ) ) |
| 11 |
10
|
ad2antlr |
|- ( ( ( ph /\ x e. ( A (,] B ) ) /\ -. x = B ) -> x e. ( A [,] B ) ) |
| 12 |
8 11
|
ifclda |
|- ( ( ph /\ x e. ( A (,] B ) ) -> if ( x = B , A , x ) e. ( A [,] B ) ) |
| 13 |
12 4
|
fmptd |
|- ( ph -> L : ( A (,] B ) --> ( A [,] B ) ) |