Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Fourier Series
fourierdlem17
Next ⟩
fourierdlem18
Metamath Proof Explorer
Ascii
Unicode
Theorem
fourierdlem17
Description:
The defined
L
is actually a function.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Hypotheses
fourierdlem17.a
⊢
φ
→
A
∈
ℝ
fourierdlem17.b
⊢
φ
→
B
∈
ℝ
fourierdlem17.altb
⊢
φ
→
A
<
B
fourierdlem17.l
⊢
L
=
x
∈
A
B
⟼
if
x
=
B
A
x
Assertion
fourierdlem17
⊢
φ
→
L
:
A
B
⟶
A
B
Proof
Step
Hyp
Ref
Expression
1
fourierdlem17.a
⊢
φ
→
A
∈
ℝ
2
fourierdlem17.b
⊢
φ
→
B
∈
ℝ
3
fourierdlem17.altb
⊢
φ
→
A
<
B
4
fourierdlem17.l
⊢
L
=
x
∈
A
B
⟼
if
x
=
B
A
x
5
1
leidd
⊢
φ
→
A
≤
A
6
1
2
3
ltled
⊢
φ
→
A
≤
B
7
1
2
1
5
6
eliccd
⊢
φ
→
A
∈
A
B
8
7
ad2antrr
⊢
φ
∧
x
∈
A
B
∧
x
=
B
→
A
∈
A
B
9
iocssicc
⊢
A
B
⊆
A
B
10
9
sseli
⊢
x
∈
A
B
→
x
∈
A
B
11
10
ad2antlr
⊢
φ
∧
x
∈
A
B
∧
¬
x
=
B
→
x
∈
A
B
12
8
11
ifclda
⊢
φ
∧
x
∈
A
B
→
if
x
=
B
A
x
∈
A
B
13
12
4
fmptd
⊢
φ
→
L
:
A
B
⟶
A
B