Metamath Proof Explorer


Theorem fourierdlem17

Description: The defined L is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem17.a φA
fourierdlem17.b φB
fourierdlem17.altb φA<B
fourierdlem17.l L=xABifx=BAx
Assertion fourierdlem17 φL:ABAB

Proof

Step Hyp Ref Expression
1 fourierdlem17.a φA
2 fourierdlem17.b φB
3 fourierdlem17.altb φA<B
4 fourierdlem17.l L=xABifx=BAx
5 1 leidd φAA
6 1 2 3 ltled φAB
7 1 2 1 5 6 eliccd φAAB
8 7 ad2antrr φxABx=BAAB
9 iocssicc ABAB
10 9 sseli xABxAB
11 10 ad2antlr φxAB¬x=BxAB
12 8 11 ifclda φxABifx=BAxAB
13 12 4 fmptd φL:ABAB