Metamath Proof Explorer


Theorem fourierdlem17

Description: The defined L is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem17.a φ A
fourierdlem17.b φ B
fourierdlem17.altb φ A < B
fourierdlem17.l L = x A B if x = B A x
Assertion fourierdlem17 φ L : A B A B

Proof

Step Hyp Ref Expression
1 fourierdlem17.a φ A
2 fourierdlem17.b φ B
3 fourierdlem17.altb φ A < B
4 fourierdlem17.l L = x A B if x = B A x
5 1 leidd φ A A
6 1 2 3 ltled φ A B
7 1 2 1 5 6 eliccd φ A A B
8 7 ad2antrr φ x A B x = B A A B
9 iocssicc A B A B
10 9 sseli x A B x A B
11 10 ad2antlr φ x A B ¬ x = B x A B
12 8 11 ifclda φ x A B if x = B A x A B
13 12 4 fmptd φ L : A B A B