| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgspliticc.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
itgspliticc.2 |
|- ( ph -> C e. RR ) |
| 3 |
|
itgspliticc.3 |
|- ( ph -> B e. ( A [,] C ) ) |
| 4 |
|
itgspliticc.4 |
|- ( ( ph /\ x e. ( A [,] C ) ) -> D e. V ) |
| 5 |
|
itgspliticc.5 |
|- ( ph -> ( x e. ( A [,] B ) |-> D ) e. L^1 ) |
| 6 |
|
itgspliticc.6 |
|- ( ph -> ( x e. ( B [,] C ) |-> D ) e. L^1 ) |
| 7 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 8 |
|
elicc2 |
|- ( ( A e. RR /\ C e. RR ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
| 10 |
3 9
|
mpbid |
|- ( ph -> ( B e. RR /\ A <_ B /\ B <_ C ) ) |
| 11 |
10
|
simp1d |
|- ( ph -> B e. RR ) |
| 12 |
11
|
rexrd |
|- ( ph -> B e. RR* ) |
| 13 |
2
|
rexrd |
|- ( ph -> C e. RR* ) |
| 14 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
| 15 |
|
xrmaxle |
|- ( ( A e. RR* /\ B e. RR* /\ z e. RR* ) -> ( if ( A <_ B , B , A ) <_ z <-> ( A <_ z /\ B <_ z ) ) ) |
| 16 |
|
xrlemin |
|- ( ( z e. RR* /\ B e. RR* /\ C e. RR* ) -> ( z <_ if ( B <_ C , B , C ) <-> ( z <_ B /\ z <_ C ) ) ) |
| 17 |
14 15 16
|
ixxin |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( B e. RR* /\ C e. RR* ) ) -> ( ( A [,] B ) i^i ( B [,] C ) ) = ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) ) |
| 18 |
7 12 12 13 17
|
syl22anc |
|- ( ph -> ( ( A [,] B ) i^i ( B [,] C ) ) = ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) ) |
| 19 |
10
|
simp2d |
|- ( ph -> A <_ B ) |
| 20 |
19
|
iftrued |
|- ( ph -> if ( A <_ B , B , A ) = B ) |
| 21 |
10
|
simp3d |
|- ( ph -> B <_ C ) |
| 22 |
21
|
iftrued |
|- ( ph -> if ( B <_ C , B , C ) = B ) |
| 23 |
20 22
|
oveq12d |
|- ( ph -> ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) = ( B [,] B ) ) |
| 24 |
|
iccid |
|- ( B e. RR* -> ( B [,] B ) = { B } ) |
| 25 |
12 24
|
syl |
|- ( ph -> ( B [,] B ) = { B } ) |
| 26 |
18 23 25
|
3eqtrd |
|- ( ph -> ( ( A [,] B ) i^i ( B [,] C ) ) = { B } ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( vol* ` ( ( A [,] B ) i^i ( B [,] C ) ) ) = ( vol* ` { B } ) ) |
| 28 |
|
ovolsn |
|- ( B e. RR -> ( vol* ` { B } ) = 0 ) |
| 29 |
11 28
|
syl |
|- ( ph -> ( vol* ` { B } ) = 0 ) |
| 30 |
27 29
|
eqtrd |
|- ( ph -> ( vol* ` ( ( A [,] B ) i^i ( B [,] C ) ) ) = 0 ) |
| 31 |
|
iccsplit |
|- ( ( A e. RR /\ C e. RR /\ B e. ( A [,] C ) ) -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) |
| 32 |
1 2 3 31
|
syl3anc |
|- ( ph -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) |
| 33 |
30 32 4 5 6
|
itgsplit |
|- ( ph -> S. ( A [,] C ) D _d x = ( S. ( A [,] B ) D _d x + S. ( B [,] C ) D _d x ) ) |