Metamath Proof Explorer


Theorem itgspliticc

Description: The S. integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses itgspliticc.1 φ A
itgspliticc.2 φ C
itgspliticc.3 φ B A C
itgspliticc.4 φ x A C D V
itgspliticc.5 φ x A B D 𝐿 1
itgspliticc.6 φ x B C D 𝐿 1
Assertion itgspliticc φ A C D dx = A B D dx + B C D dx

Proof

Step Hyp Ref Expression
1 itgspliticc.1 φ A
2 itgspliticc.2 φ C
3 itgspliticc.3 φ B A C
4 itgspliticc.4 φ x A C D V
5 itgspliticc.5 φ x A B D 𝐿 1
6 itgspliticc.6 φ x B C D 𝐿 1
7 1 rexrd φ A *
8 elicc2 A C B A C B A B B C
9 1 2 8 syl2anc φ B A C B A B B C
10 3 9 mpbid φ B A B B C
11 10 simp1d φ B
12 11 rexrd φ B *
13 2 rexrd φ C *
14 df-icc . = x * , y * z * | x z z y
15 xrmaxle A * B * z * if A B B A z A z B z
16 xrlemin z * B * C * z if B C B C z B z C
17 14 15 16 ixxin A * B * B * C * A B B C = if A B B A if B C B C
18 7 12 12 13 17 syl22anc φ A B B C = if A B B A if B C B C
19 10 simp2d φ A B
20 19 iftrued φ if A B B A = B
21 10 simp3d φ B C
22 21 iftrued φ if B C B C = B
23 20 22 oveq12d φ if A B B A if B C B C = B B
24 iccid B * B B = B
25 12 24 syl φ B B = B
26 18 23 25 3eqtrd φ A B B C = B
27 26 fveq2d φ vol * A B B C = vol * B
28 ovolsn B vol * B = 0
29 11 28 syl φ vol * B = 0
30 27 29 eqtrd φ vol * A B B C = 0
31 iccsplit A C B A C A C = A B B C
32 1 2 3 31 syl3anc φ A C = A B B C
33 30 32 4 5 6 itgsplit φ A C D dx = A B D dx + B C D dx