Metamath Proof Explorer


Theorem fourierdlem107

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any positive value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem107.a φA
fourierdlem107.b φB
fourierdlem107.t T=BA
fourierdlem107.x φX+
fourierdlem107.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem107.m φM
fourierdlem107.q φQPM
fourierdlem107.f φF:
fourierdlem107.fper φxFx+T=Fx
fourierdlem107.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem107.r φi0..^MRFQiQi+1limQi
fourierdlem107.l φi0..^MLFQiQi+1limQi+1
fourierdlem107.o O=mp0m|p0=AXpm=Ai0..^mpi<pi+1
fourierdlem107.h H=AXAyAXA|ky+kTranQ
fourierdlem107.n N=H1
fourierdlem107.s S=ιf|fIsom<,<0NH
fourierdlem107.e E=xx+BxTT
fourierdlem107.z Z=yABify=BAy
fourierdlem107.i I=xsupi0..^M|QiZEx<
Assertion fourierdlem107 φAXBXFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 fourierdlem107.a φA
2 fourierdlem107.b φB
3 fourierdlem107.t T=BA
4 fourierdlem107.x φX+
5 fourierdlem107.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
6 fourierdlem107.m φM
7 fourierdlem107.q φQPM
8 fourierdlem107.f φF:
9 fourierdlem107.fper φxFx+T=Fx
10 fourierdlem107.fcn φi0..^MFQiQi+1:QiQi+1cn
11 fourierdlem107.r φi0..^MRFQiQi+1limQi
12 fourierdlem107.l φi0..^MLFQiQi+1limQi+1
13 fourierdlem107.o O=mp0m|p0=AXpm=Ai0..^mpi<pi+1
14 fourierdlem107.h H=AXAyAXA|ky+kTranQ
15 fourierdlem107.n N=H1
16 fourierdlem107.s S=ιf|fIsom<,<0NH
17 fourierdlem107.e E=xx+BxTT
18 fourierdlem107.z Z=yABify=BAy
19 fourierdlem107.i I=xsupi0..^M|QiZEx<
20 3 oveq2i A-X+T=AX+B-A
21 1 recnd φA
22 4 rpred φX
23 22 recnd φX
24 2 recnd φB
25 21 23 24 21 subadd4b φAX+B-A=AA+B-X
26 20 25 eqtrid φA-X+T=AA+B-X
27 21 subidd φAA=0
28 27 oveq1d φAA+B-X=0+B-X
29 2 22 resubcld φBX
30 29 recnd φBX
31 30 addlidd φ0+B-X=BX
32 26 28 31 3eqtrd φA-X+T=BX
33 3 oveq2i A+T=A+B-A
34 21 24 pncan3d φA+B-A=B
35 33 34 eqtrid φA+T=B
36 32 35 oveq12d φA-X+TA+T=BXB
37 36 eqcomd φBXB=A-X+TA+T
38 37 itgeq1d φBXBFxdx=A-X+TA+TFxdx
39 1 22 resubcld φAX
40 fveq2 i=jpi=pj
41 oveq1 i=ji+1=j+1
42 41 fveq2d i=jpi+1=pj+1
43 40 42 breq12d i=jpi<pi+1pj<pj+1
44 43 cbvralvw i0..^mpi<pi+1j0..^mpj<pj+1
45 44 a1i mi0..^mpi<pi+1j0..^mpj<pj+1
46 45 anbi2d mp0=AXpm=Ai0..^mpi<pi+1p0=AXpm=Aj0..^mpj<pj+1
47 46 rabbidv mp0m|p0=AXpm=Ai0..^mpi<pi+1=p0m|p0=AXpm=Aj0..^mpj<pj+1
48 47 mpteq2ia mp0m|p0=AXpm=Ai0..^mpi<pi+1=mp0m|p0=AXpm=Aj0..^mpj<pj+1
49 13 48 eqtri O=mp0m|p0=AXpm=Aj0..^mpj<pj+1
50 1 4 ltsubrpd φAX<A
51 3 5 6 7 39 1 50 13 14 15 16 fourierdlem54 φNSONSIsom<,<0NH
52 51 simpld φNSON
53 52 simpld φN
54 2 1 resubcld φBA
55 3 54 eqeltrid φT
56 52 simprd φSON
57 39 adantr φxAXAAX
58 1 adantr φxAXAA
59 simpr φxAXAxAXA
60 eliccre AXAxAXAx
61 57 58 59 60 syl3anc φxAXAx
62 61 9 syldan φxAXAFx+T=Fx
63 fveq2 i=jSi=Sj
64 63 oveq1d i=jSi+T=Sj+T
65 64 cbvmptv i0NSi+T=j0NSj+T
66 eqid mp0m|p0=A-X+Tpm=A+Tj0..^mpj<pj+1=mp0m|p0=A-X+Tpm=A+Tj0..^mpj<pj+1
67 6 adantr φj0..^NM
68 7 adantr φj0..^NQPM
69 8 adantr φj0..^NF:
70 9 adantlr φj0..^NxFx+T=Fx
71 10 adantlr φj0..^Ni0..^MFQiQi+1:QiQi+1cn
72 39 adantr φj0..^NAX
73 72 rexrd φj0..^NAX*
74 pnfxr +∞*
75 74 a1i φj0..^N+∞*
76 1 adantr φj0..^NA
77 50 adantr φj0..^NAX<A
78 1 ltpnfd φA<+∞
79 78 adantr φj0..^NA<+∞
80 73 75 76 77 79 eliood φj0..^NAAX+∞
81 simpr φj0..^Nj0..^N
82 eqid Sj+1ESj+1=Sj+1ESj+1
83 eqid FZESjESj+1=FZESjESj+1
84 eqid yZESj+Sj+1-ESj+1ESj+1+Sj+1-ESj+1FZESjESj+1ySj+1ESj+1=yZESj+Sj+1-ESj+1ESj+1+Sj+1-ESj+1FZESjESj+1ySj+1ESj+1
85 5 3 67 68 69 70 71 72 80 13 14 15 16 17 18 81 82 83 84 19 fourierdlem90 φj0..^NFSjSj+1:SjSj+1cn
86 11 adantlr φj0..^Ni0..^MRFQiQi+1limQi
87 eqid i0..^MR=i0..^MR
88 5 3 67 68 69 70 71 86 72 80 13 14 15 16 17 18 81 82 19 87 fourierdlem89 φj0..^NifZESj=QISji0..^MRISjFZESjFSjSj+1limSj
89 12 adantlr φj0..^Ni0..^MLFQiQi+1limQi+1
90 eqid i0..^ML=i0..^ML
91 5 3 67 68 69 70 71 89 72 80 13 14 15 16 17 18 81 82 19 90 fourierdlem91 φj0..^NifESj+1=QISj+1i0..^MLISjFESj+1FSjSj+1limSj+1
92 39 1 49 53 55 56 62 65 66 8 85 88 91 fourierdlem92 φA-X+TA+TFxdx=AXAFxdx
93 38 92 eqtrd φBXBFxdx=AXAFxdx
94 8 adantr φxBXBF:
95 29 adantr φxBXBBX
96 2 adantr φxBXBB
97 simpr φxBXBxBXB
98 eliccre BXBxBXBx
99 95 96 97 98 syl3anc φxBXBx
100 94 99 ffvelcdmd φxBXBFx
101 29 rexrd φBX*
102 74 a1i φ+∞*
103 2 4 ltsubrpd φBX<B
104 2 ltpnfd φB<+∞
105 101 102 2 103 104 eliood φBBX+∞
106 5 3 6 7 8 9 10 11 12 29 105 fourierdlem105 φxBXBFx𝐿1
107 100 106 itgcl φBXBFxdx
108 93 107 eqeltrrd φAXAFxdx
109 108 subidd φAXAFxdxAXAFxdx=0
110 109 eqcomd φ0=AXAFxdxAXAFxdx
111 110 adantr φT<X0=AXAFxdxAXAFxdx
112 39 adantr φT<XAX
113 1 adantr φT<XA
114 29 adantr φT<XBX
115 5 6 7 fourierdlem11 φABA<B
116 115 simp3d φA<B
117 1 2 116 ltled φAB
118 117 adantr φT<XAB
119 1 2 22 lesub1d φABAXBX
120 119 adantr φT<XABAXBX
121 118 120 mpbid φT<XAXBX
122 2 adantr φT<XB
123 22 adantr φT<XX
124 simpr φT<XT<X
125 3 124 eqbrtrrid φT<XBA<X
126 122 113 123 125 ltsub23d φT<XBX<A
127 114 113 126 ltled φT<XBXA
128 112 113 114 121 127 eliccd φT<XBXAXA
129 8 adantr φxAXAF:
130 129 61 ffvelcdmd φxAXAFx
131 130 adantlr φT<XxAXAFx
132 39 rexrd φAX*
133 1 2 22 116 ltsub1dd φAX<BX
134 29 ltpnfd φBX<+∞
135 132 102 29 133 134 eliood φBXAX+∞
136 5 3 6 7 8 9 10 11 12 39 135 fourierdlem105 φxAXBXFx𝐿1
137 136 adantr φT<XxAXBXFx𝐿1
138 6 adantr φT<XM
139 7 adantr φT<XQPM
140 8 adantr φT<XF:
141 9 adantlr φT<XxFx+T=Fx
142 10 adantlr φT<Xi0..^MFQiQi+1:QiQi+1cn
143 11 adantlr φT<Xi0..^MRFQiQi+1limQi
144 12 adantlr φT<Xi0..^MLFQiQi+1limQi+1
145 101 adantr φT<XBX*
146 74 a1i φT<X+∞*
147 113 ltpnfd φT<XA<+∞
148 145 146 113 126 147 eliood φT<XABX+∞
149 5 3 138 139 140 141 142 143 144 114 148 fourierdlem105 φT<XxBXAFx𝐿1
150 112 113 128 131 137 149 itgspliticc φT<XAXAFxdx=AXBXFxdx+BXAFxdx
151 150 oveq1d φT<XAXAFxdxAXAFxdx=AXBXFxdx+BXAFxdx-AXAFxdx
152 8 adantr φxAXBXF:
153 39 adantr φxAXBXAX
154 29 adantr φxAXBXBX
155 simpr φxAXBXxAXBX
156 eliccre AXBXxAXBXx
157 153 154 155 156 syl3anc φxAXBXx
158 152 157 ffvelcdmd φxAXBXFx
159 158 136 itgcl φAXBXFxdx
160 159 adantr φT<XAXBXFxdx
161 8 adantr φxBXAF:
162 29 adantr φxBXABX
163 1 adantr φxBXAA
164 simpr φxBXAxBXA
165 eliccre BXAxBXAx
166 162 163 164 165 syl3anc φxBXAx
167 161 166 ffvelcdmd φxBXAFx
168 167 adantlr φT<XxBXAFx
169 168 149 itgcl φT<XBXAFxdx
170 108 adantr φT<XAXAFxdx
171 160 169 170 addsubassd φT<XAXBXFxdx+BXAFxdx-AXAFxdx=AXBXFxdx+BXAFxdx-AXAFxdx
172 111 151 171 3eqtrd φT<X0=AXBXFxdx+BXAFxdx-AXAFxdx
173 172 oveq2d φT<XAXBXFxdx0=AXBXFxdxAXBXFxdx+BXAFxdx-AXAFxdx
174 160 subid1d φT<XAXBXFxdx0=AXBXFxdx
175 159 subidd φAXBXFxdxAXBXFxdx=0
176 175 oveq1d φAXBXFxdx-AXBXFxdx-BXAFxdxAXAFxdx=0BXAFxdxAXAFxdx
177 176 adantr φT<XAXBXFxdx-AXBXFxdx-BXAFxdxAXAFxdx=0BXAFxdxAXAFxdx
178 169 170 subcld φT<XBXAFxdxAXAFxdx
179 160 160 178 subsub4d φT<XAXBXFxdx-AXBXFxdx-BXAFxdxAXAFxdx=AXBXFxdxAXBXFxdx+BXAFxdx-AXAFxdx
180 df-neg BXAFxdxAXAFxdx=0BXAFxdxAXAFxdx
181 169 170 negsubdi2d φT<XBXAFxdxAXAFxdx=AXAFxdxBXAFxdx
182 180 181 eqtr3id φT<X0BXAFxdxAXAFxdx=AXAFxdxBXAFxdx
183 177 179 182 3eqtr3d φT<XAXBXFxdxAXBXFxdx+BXAFxdx-AXAFxdx=AXAFxdxBXAFxdx
184 173 174 183 3eqtr3d φT<XAXBXFxdx=AXAFxdxBXAFxdx
185 107 subidd φBXBFxdxBXBFxdx=0
186 185 eqcomd φ0=BXBFxdxBXBFxdx
187 186 oveq2d φBXAFxdx+0=BXAFxdx+BXBFxdx-BXBFxdx
188 187 adantr φT<XBXAFxdx+0=BXAFxdx+BXBFxdx-BXBFxdx
189 169 addridd φT<XBXAFxdx+0=BXAFxdx
190 114 122 113 127 118 eliccd φT<XABXB
191 100 adantlr φT<XxBXBFx
192 1 2 iccssred φAB
193 8 192 feqresmpt φFAB=xABFx
194 8 192 fssresd φFAB:AB
195 ioossicc QiQi+1QiQi+1
196 1 rexrd φA*
197 196 adantr φi0..^MA*
198 2 rexrd φB*
199 198 adantr φi0..^MB*
200 5 6 7 fourierdlem15 φQ:0MAB
201 200 adantr φi0..^MQ:0MAB
202 simpr φi0..^Mi0..^M
203 197 199 201 202 fourierdlem8 φi0..^MQiQi+1AB
204 195 203 sstrid φi0..^MQiQi+1AB
205 204 resabs1d φi0..^MFABQiQi+1=FQiQi+1
206 205 10 eqeltrd φi0..^MFABQiQi+1:QiQi+1cn
207 205 eqcomd φi0..^MFQiQi+1=FABQiQi+1
208 207 oveq1d φi0..^MFQiQi+1limQi=FABQiQi+1limQi
209 11 208 eleqtrd φi0..^MRFABQiQi+1limQi
210 207 oveq1d φi0..^MFQiQi+1limQi+1=FABQiQi+1limQi+1
211 12 210 eleqtrd φi0..^MLFABQiQi+1limQi+1
212 5 6 7 194 206 209 211 fourierdlem69 φFAB𝐿1
213 193 212 eqeltrrd φxABFx𝐿1
214 213 adantr φT<XxABFx𝐿1
215 114 122 190 191 149 214 itgspliticc φT<XBXBFxdx=BXAFxdx+ABFxdx
216 215 oveq2d φT<XBXBFxdxBXBFxdx=BXBFxdxBXAFxdx+ABFxdx
217 216 oveq2d φT<XBXAFxdx+BXBFxdx-BXBFxdx=BXAFxdx+BXBFxdx-BXAFxdx+ABFxdx
218 107 adantr φT<XBXBFxdx
219 215 218 eqeltrrd φT<XBXAFxdx+ABFxdx
220 169 218 219 addsub12d φT<XBXAFxdx+BXBFxdx-BXAFxdx+ABFxdx=BXBFxdx+BXAFxdx-BXAFxdx+ABFxdx
221 8 adantr φxABF:
222 1 adantr φxABA
223 2 adantr φxABB
224 simpr φxABxAB
225 eliccre ABxABx
226 222 223 224 225 syl3anc φxABx
227 221 226 ffvelcdmd φxABFx
228 227 213 itgcl φABFxdx
229 228 adantr φT<XABFxdx
230 169 169 229 subsub4d φT<XBXAFxdx-BXAFxdx-ABFxdx=BXAFxdxBXAFxdx+ABFxdx
231 230 eqcomd φT<XBXAFxdxBXAFxdx+ABFxdx=BXAFxdx-BXAFxdx-ABFxdx
232 231 oveq2d φT<XBXBFxdx+BXAFxdx-BXAFxdx+ABFxdx=BXBFxdx+BXAFxdxBXAFxdx-ABFxdx
233 169 subidd φT<XBXAFxdxBXAFxdx=0
234 233 oveq1d φT<XBXAFxdx-BXAFxdx-ABFxdx=0ABFxdx
235 df-neg ABFxdx=0ABFxdx
236 234 235 eqtr4di φT<XBXAFxdx-BXAFxdx-ABFxdx=ABFxdx
237 236 oveq2d φT<XBXBFxdx+BXAFxdxBXAFxdx-ABFxdx=BXBFxdx+ABFxdx
238 218 229 negsubd φT<XBXBFxdx+ABFxdx=BXBFxdxABFxdx
239 232 237 238 3eqtrd φT<XBXBFxdx+BXAFxdx-BXAFxdx+ABFxdx=BXBFxdxABFxdx
240 217 220 239 3eqtrd φT<XBXAFxdx+BXBFxdx-BXBFxdx=BXBFxdxABFxdx
241 188 189 240 3eqtr3d φT<XBXAFxdx=BXBFxdxABFxdx
242 241 oveq2d φT<XAXAFxdxBXAFxdx=AXAFxdxBXBFxdxABFxdx
243 108 107 228 subsubd φAXAFxdxBXBFxdxABFxdx=AXAFxdx-BXBFxdx+ABFxdx
244 93 oveq2d φAXAFxdxBXBFxdx=AXAFxdxAXAFxdx
245 244 109 eqtrd φAXAFxdxBXBFxdx=0
246 245 oveq1d φAXAFxdx-BXBFxdx+ABFxdx=0+ABFxdx
247 228 addlidd φ0+ABFxdx=ABFxdx
248 243 246 247 3eqtrd φAXAFxdxBXBFxdxABFxdx=ABFxdx
249 248 adantr φT<XAXAFxdxBXBFxdxABFxdx=ABFxdx
250 184 242 249 3eqtrd φT<XAXBXFxdx=ABFxdx
251 39 adantr φXTAX
252 29 adantr φXTBX
253 1 adantr φXTA
254 39 1 50 ltled φAXA
255 254 adantr φXTAXA
256 22 adantr φXTX
257 2 adantr φXTB
258 id XTXT
259 258 3 breqtrdi XTXBA
260 259 adantl φXTXBA
261 256 257 253 260 lesubd φXTABX
262 251 252 253 255 261 eliccd φXTAAXBX
263 158 adantlr φXTxAXBXFx
264 132 102 1 50 78 eliood φAAX+∞
265 5 3 6 7 8 9 10 11 12 39 264 fourierdlem105 φxAXAFx𝐿1
266 265 adantr φXTxAXAFx𝐿1
267 1 leidd φAA
268 4 rpge0d φ0X
269 2 22 subge02d φ0XBXB
270 268 269 mpbid φBXB
271 iccss ABAABXBABXAB
272 1 2 267 270 271 syl22anc φABXAB
273 iccmbl ABXABXdomvol
274 1 29 273 syl2anc φABXdomvol
275 272 274 227 213 iblss φxABXFx𝐿1
276 275 adantr φXTxABXFx𝐿1
277 251 252 262 263 266 276 itgspliticc φXTAXBXFxdx=AXAFxdx+ABXFxdx
278 268 adantr φXT0X
279 269 adantr φXT0XBXB
280 278 279 mpbid φXTBXB
281 253 257 252 261 280 eliccd φXTBXAB
282 227 adantlr φXTxABFx
283 2 leidd φBB
284 283 adantr φXTBB
285 iccss ABABXBBBXBAB
286 253 257 261 284 285 syl22anc φXTBXBAB
287 iccmbl BXBBXBdomvol
288 29 2 287 syl2anc φBXBdomvol
289 288 adantr φXTBXBdomvol
290 213 adantr φXTxABFx𝐿1
291 286 289 282 290 iblss φXTxBXBFx𝐿1
292 253 257 281 282 276 291 itgspliticc φXTABFxdx=ABXFxdx+BXBFxdx
293 292 oveq1d φXTABFxdxBXBFxdx=ABXFxdx+BXBFxdx-BXBFxdx
294 8 adantr φxABXF:
295 1 adantr φxABXA
296 29 adantr φxABXBX
297 simpr φxABXxABX
298 eliccre ABXxABXx
299 295 296 297 298 syl3anc φxABXx
300 294 299 ffvelcdmd φxABXFx
301 300 275 itgcl φABXFxdx
302 301 107 107 addsubassd φABXFxdx+BXBFxdx-BXBFxdx=ABXFxdx+BXBFxdx-BXBFxdx
303 302 adantr φXTABXFxdx+BXBFxdx-BXBFxdx=ABXFxdx+BXBFxdx-BXBFxdx
304 185 oveq2d φABXFxdx+BXBFxdx-BXBFxdx=ABXFxdx+0
305 301 addridd φABXFxdx+0=ABXFxdx
306 304 305 eqtrd φABXFxdx+BXBFxdx-BXBFxdx=ABXFxdx
307 306 adantr φXTABXFxdx+BXBFxdx-BXBFxdx=ABXFxdx
308 293 303 307 3eqtrrd φXTABXFxdx=ABFxdxBXBFxdx
309 308 oveq2d φXTAXAFxdx+ABXFxdx=AXAFxdx+ABFxdx-BXBFxdx
310 93 adantr φXTBXBFxdx=AXAFxdx
311 107 adantr φXTBXBFxdx
312 310 311 eqeltrrd φXTAXAFxdx
313 282 290 itgcl φXTABFxdx
314 312 313 311 addsub12d φXTAXAFxdx+ABFxdx-BXBFxdx=ABFxdx+AXAFxdx-BXBFxdx
315 313 312 311 addsubassd φXTABFxdx+AXAFxdx-BXBFxdx=ABFxdx+AXAFxdx-BXBFxdx
316 314 315 eqtr4d φXTAXAFxdx+ABFxdx-BXBFxdx=ABFxdx+AXAFxdx-BXBFxdx
317 277 309 316 3eqtrd φXTAXBXFxdx=ABFxdx+AXAFxdx-BXBFxdx
318 310 oveq2d φXTABFxdx+AXAFxdx-BXBFxdx=ABFxdx+AXAFxdx-AXAFxdx
319 313 312 pncand φXTABFxdx+AXAFxdx-AXAFxdx=ABFxdx
320 317 318 319 3eqtrd φXTAXBXFxdx=ABFxdx
321 250 320 55 22 ltlecasei φAXBXFxdx=ABFxdx