Metamath Proof Explorer


Theorem fourierdlem105

Description: A piecewise continuous function is integrable on any closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem105.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem105.t T=BA
fourierdlem105.m φM
fourierdlem105.q φQPM
fourierdlem105.f φF:
fourierdlem105.6 φxFx+T=Fx
fourierdlem105.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem105.r φi0..^MRFQiQi+1limQi
fourierdlem105.l φi0..^MLFQiQi+1limQi+1
fourierdlem105.c φC
fourierdlem105.d φDC+∞
Assertion fourierdlem105 φxCDFx𝐿1

Proof

Step Hyp Ref Expression
1 fourierdlem105.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem105.t T=BA
3 fourierdlem105.m φM
4 fourierdlem105.q φQPM
5 fourierdlem105.f φF:
6 fourierdlem105.6 φxFx+T=Fx
7 fourierdlem105.fcn φi0..^MFQiQi+1:QiQi+1cn
8 fourierdlem105.r φi0..^MRFQiQi+1limQi
9 fourierdlem105.l φi0..^MLFQiQi+1limQi+1
10 fourierdlem105.c φC
11 fourierdlem105.d φDC+∞
12 eqid mp0m|p0=Cpm=Di0..^mpi<pi+1=mp0m|p0=Cpm=Di0..^mpi<pi+1
13 eqid CDwCD|jw+jTranQ1=CDwCD|jw+jTranQ1
14 oveq1 w=yw+jT=y+jT
15 14 eleq1d w=yw+jTranQy+jTranQ
16 15 rexbidv w=yjw+jTranQjy+jTranQ
17 oveq1 j=kjT=kT
18 17 oveq2d j=ky+jT=y+kT
19 18 eleq1d j=ky+jTranQy+kTranQ
20 19 cbvrexvw jy+jTranQky+kTranQ
21 16 20 bitrdi w=yjw+jTranQky+kTranQ
22 21 cbvrabv wCD|jw+jTranQ=yCD|ky+kTranQ
23 22 uneq2i CDwCD|jw+jTranQ=CDyCD|ky+kTranQ
24 isoeq1 g=fgIsom<,<0CDwCD|jw+jTranQ1CDwCD|jw+jTranQfIsom<,<0CDwCD|jw+jTranQ1CDwCD|jw+jTranQ
25 24 cbviotavw ιg|gIsom<,<0CDwCD|jw+jTranQ1CDwCD|jw+jTranQ=ιf|fIsom<,<0CDwCD|jw+jTranQ1CDwCD|jw+jTranQ
26 id w=xw=x
27 oveq2 w=xBw=Bx
28 27 oveq1d w=xBwT=BxT
29 28 fveq2d w=xBwT=BxT
30 29 oveq1d w=xBwTT=BxTT
31 26 30 oveq12d w=xw+BwTT=x+BxTT
32 31 cbvmptv ww+BwTT=xx+BxTT
33 eqeq1 w=yw=By=B
34 id w=yw=y
35 33 34 ifbieq2d w=yifw=BAw=ify=BAy
36 35 cbvmptv wABifw=BAw=yABify=BAy
37 fveq2 z=xww+BwTTz=ww+BwTTx
38 37 fveq2d z=xwABifw=BAwww+BwTTz=wABifw=BAwww+BwTTx
39 38 breq2d z=xQjwABifw=BAwww+BwTTzQjwABifw=BAwww+BwTTx
40 39 rabbidv z=xj0..^M|QjwABifw=BAwww+BwTTz=j0..^M|QjwABifw=BAwww+BwTTx
41 fveq2 j=iQj=Qi
42 41 breq1d j=iQjwABifw=BAwww+BwTTxQiwABifw=BAwww+BwTTx
43 42 cbvrabv j0..^M|QjwABifw=BAwww+BwTTx=i0..^M|QiwABifw=BAwww+BwTTx
44 40 43 eqtrdi z=xj0..^M|QjwABifw=BAwww+BwTTz=i0..^M|QiwABifw=BAwww+BwTTx
45 44 supeq1d z=xsupj0..^M|QjwABifw=BAwww+BwTTz<=supi0..^M|QiwABifw=BAwww+BwTTx<
46 45 cbvmptv zsupj0..^M|QjwABifw=BAwww+BwTTz<=xsupi0..^M|QiwABifw=BAwww+BwTTx<
47 1 2 3 4 5 6 7 8 9 10 11 12 13 23 25 32 36 46 fourierdlem100 φxCDFx𝐿1