| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem108.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem108.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem108.t | ⊢ 𝑇  =  ( 𝐵  −  𝐴 ) | 
						
							| 4 |  | fourierdlem108.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 5 |  | fourierdlem108.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem108.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem108.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem108.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 9 |  | fourierdlem108.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 10 |  | fourierdlem108.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 11 |  | fourierdlem108.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 12 |  | fourierdlem108.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑘  ·  𝑇 ) ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 17 | 16 | cbvrabv | ⊢ { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 18 | 17 | uneq2i | ⊢ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑙  ·  𝑇 )  =  ( 𝑘  ·  𝑇 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑙  =  𝑘  →  ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  =  ( 𝑤  +  ( 𝑘  ·  𝑇 ) ) ) | 
						
							| 21 | 20 | eleq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 22 | 21 | cbvrexvw | ⊢ ( ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 23 | 22 | rgenw | ⊢ ∀ 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) | 
						
							| 24 |  | rabbi | ⊢ ( ∀ 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 )  ↔  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 25 | 23 24 | mpbi | ⊢ { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 26 | 25 | uneq2i | ⊢ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 27 | 26 | fveq2i | ⊢ ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  =  ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) | 
						
							| 28 | 27 | oveq1i | ⊢ ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 )  =  ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) | 
						
							| 29 |  | isoeq5 | ⊢ ( ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 30 | 26 29 | ax-mp | ⊢ ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 31 |  | isoeq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 32 | 30 31 | bitrid | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  ↔  𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) ) | 
						
							| 33 | 32 | cbviotavw | ⊢ ( ℩ 𝑔 𝑔  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) )  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑙  ∈  ℤ ( 𝑤  +  ( 𝑙  ·  𝑇 ) )  ∈  ran  𝑄 } ) )  −  1 ) ) ,  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑤  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑤  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) ) ) | 
						
							| 34 |  | id | ⊢ ( 𝑤  =  𝑥  →  𝑤  =  𝑥 ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐵  −  𝑤 )  =  ( 𝐵  −  𝑥 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐵  −  𝑤 )  /  𝑇 )  =  ( ( 𝐵  −  𝑥 )  /  𝑇 ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( 𝑤  =  𝑥  →  ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 39 | 34 38 | oveq12d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 40 | 39 | cbvmptv | ⊢ ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 41 |  | eqeq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  =  𝐵  ↔  𝑦  =  𝐵 ) ) | 
						
							| 42 |  | id | ⊢ ( 𝑤  =  𝑦  →  𝑤  =  𝑦 ) | 
						
							| 43 | 41 42 | ifbieq2d | ⊢ ( 𝑤  =  𝑦  →  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 )  =  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) ) | 
						
							| 44 | 43 | cbvmptv | ⊢ ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) )  =  ( 𝑦  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 )  =  ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) )  =  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) | 
						
							| 47 | 46 | breq2d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) )  ↔  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 48 | 47 | rabbidv | ⊢ ( 𝑧  =  𝑥  →  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) }  =  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 50 | 49 | breq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) )  ↔  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 51 | 50 | cbvrabv | ⊢ { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) }  =  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } | 
						
							| 52 | 48 51 | eqtrdi | ⊢ ( 𝑧  =  𝑥  →  { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) }  =  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ) | 
						
							| 53 | 52 | supeq1d | ⊢ ( 𝑧  =  𝑥  →  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) } ,  ℝ ,   <  )  =  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 54 | 53 | cbvmptv | ⊢ ( 𝑧  ∈  ℝ  ↦  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑧 ) ) } ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( ( 𝑤  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑤  =  𝐵 ,  𝐴 ,  𝑤 ) ) ‘ ( ( 𝑤  ∈  ℝ  ↦  ( 𝑤  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑤 )  /  𝑇 ) )  ·  𝑇 ) ) ) ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 9 10 11 12 13 18 28 33 40 44 54 | fourierdlem107 | ⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) |