Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem108.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
fourierdlem108.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
fourierdlem108.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
4 |
|
fourierdlem108.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
5 |
|
fourierdlem108.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
6 |
|
fourierdlem108.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
fourierdlem108.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
8 |
|
fourierdlem108.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
9 |
|
fourierdlem108.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
|
fourierdlem108.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
11 |
|
fourierdlem108.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
12 |
|
fourierdlem108.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
13 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
14 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · 𝑇 ) ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
17 |
16
|
cbvrabv |
⊢ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
18 |
17
|
uneq2i |
⊢ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑦 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
19 |
|
oveq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 · 𝑇 ) = ( 𝑘 · 𝑇 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑙 = 𝑘 → ( 𝑤 + ( 𝑙 · 𝑇 ) ) = ( 𝑤 + ( 𝑘 · 𝑇 ) ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
22 |
21
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
23 |
22
|
rgenw |
⊢ ∀ 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) |
24 |
|
rabbi |
⊢ ( ∀ 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ↔ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
25 |
23 24
|
mpbi |
⊢ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
26 |
25
|
uneq2i |
⊢ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
27 |
26
|
fveq2i |
⊢ ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) = ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) |
28 |
27
|
oveq1i |
⊢ ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) = ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) |
29 |
|
isoeq5 |
⊢ ( ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
30 |
26 29
|
ax-mp |
⊢ ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
31 |
|
isoeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
32 |
30 31
|
syl5bb |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) ) |
33 |
32
|
cbviotavw |
⊢ ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑙 ∈ ℤ ( 𝑤 + ( 𝑙 · 𝑇 ) ) ∈ ran 𝑄 } ) ) − 1 ) ) , ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑤 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑤 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) ) ) |
34 |
|
id |
⊢ ( 𝑤 = 𝑥 → 𝑤 = 𝑥 ) |
35 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐵 − 𝑤 ) = ( 𝐵 − 𝑥 ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐵 − 𝑤 ) / 𝑇 ) = ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) |
37 |
36
|
fveq2d |
⊢ ( 𝑤 = 𝑥 → ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
39 |
34 38
|
oveq12d |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
40 |
39
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
41 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 = 𝐵 ↔ 𝑦 = 𝐵 ) ) |
42 |
|
id |
⊢ ( 𝑤 = 𝑦 → 𝑤 = 𝑦 ) |
43 |
41 42
|
ifbieq2d |
⊢ ( 𝑤 = 𝑦 → if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) = if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
44 |
43
|
cbvmptv |
⊢ ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) = ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) |
46 |
45
|
fveq2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) = ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) |
47 |
46
|
breq2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) ↔ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) ) |
48 |
47
|
rabbidv |
⊢ ( 𝑧 = 𝑥 → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } ) |
49 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
50 |
49
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ↔ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) ) ) |
51 |
50
|
cbvrabv |
⊢ { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } |
52 |
48 51
|
eqtrdi |
⊢ ( 𝑧 = 𝑥 → { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } = { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } ) |
53 |
52
|
supeq1d |
⊢ ( 𝑧 = 𝑥 → sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } , ℝ , < ) = sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) ) |
54 |
53
|
cbvmptv |
⊢ ( 𝑧 ∈ ℝ ↦ sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑧 ) ) } , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( ( 𝑤 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑤 = 𝐵 , 𝐴 , 𝑤 ) ) ‘ ( ( 𝑤 ∈ ℝ ↦ ( 𝑤 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑤 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑥 ) ) } , ℝ , < ) ) |
55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 18 28 33 40 44 54
|
fourierdlem107 |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |