| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem109.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem109.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem109.t | ⊢ 𝑇  =  ( 𝐵  −  𝐴 ) | 
						
							| 4 |  | fourierdlem109.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 5 |  | fourierdlem109.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem109.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem109.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem109.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 9 |  | fourierdlem109.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 10 |  | fourierdlem109.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 11 |  | fourierdlem109.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 12 |  | fourierdlem109.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 13 |  | fourierdlem109.o | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 14 |  | fourierdlem109.h | ⊢ 𝐻  =  ( { ( 𝐴  −  𝑋 ) ,  ( 𝐵  −  𝑋 ) }  ∪  { 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 15 |  | fourierdlem109.n | ⊢ 𝑁  =  ( ( ♯ ‘ 𝐻 )  −  1 ) | 
						
							| 16 |  | fourierdlem109.16 | ⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) ) | 
						
							| 17 |  | fourierdlem109.17 | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 18 |  | fourierdlem109.18 | ⊢ 𝐽  =  ( 𝑦  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) ) | 
						
							| 19 |  | fourierdlem109.19 | ⊢ 𝐼  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 22 | 4 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  0  <  𝑋 ) | 
						
							| 24 | 22 23 | elrpd | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝑋  ∈  ℝ+ ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝑀  ∈  ℕ ) | 
						
							| 26 | 7 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 27 | 8 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 28 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑋 )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 29 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 30 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 31 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 32 | 20 21 3 24 5 25 26 27 28 29 30 31 | fourierdlem108 | ⊢ ( ( 𝜑  ∧  0  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑋  =  0  →  ( 𝐴  −  𝑋 )  =  ( 𝐴  −  0 ) ) | 
						
							| 34 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 35 | 34 | subid1d | ⊢ ( 𝜑  →  ( 𝐴  −  0 )  =  𝐴 ) | 
						
							| 36 | 33 35 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑋  =  0 )  →  ( 𝐴  −  𝑋 )  =  𝐴 ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑋  =  0  →  ( 𝐵  −  𝑋 )  =  ( 𝐵  −  0 ) ) | 
						
							| 38 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 39 | 38 | subid1d | ⊢ ( 𝜑  →  ( 𝐵  −  0 )  =  𝐵 ) | 
						
							| 40 | 37 39 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑋  =  0 )  →  ( 𝐵  −  𝑋 )  =  𝐵 ) | 
						
							| 41 | 36 40 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑋  =  0 )  →  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 42 | 41 | itgeq1d | ⊢ ( ( 𝜑  ∧  𝑋  =  0 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 43 | 42 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  𝑋  =  0 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 44 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  𝜑 ) | 
						
							| 45 | 44 4 | syl | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  𝑋  ∈  ℝ ) | 
						
							| 46 |  | 0red | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  0  ∈  ℝ ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  ¬  𝑋  =  0 ) | 
						
							| 48 | 47 | neqned | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  𝑋  ≠  0 ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  ¬  0  <  𝑋 ) | 
						
							| 50 | 45 46 48 49 | lttri5d | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  𝑋  <  0 ) | 
						
							| 51 | 4 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 52 | 34 51 | subcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℂ ) | 
						
							| 53 | 52 51 | subnegd | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  −  - 𝑋 )  =  ( ( 𝐴  −  𝑋 )  +  𝑋 ) ) | 
						
							| 54 | 34 51 | npcand | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  𝑋 )  =  𝐴 ) | 
						
							| 55 | 53 54 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  −  - 𝑋 )  =  𝐴 ) | 
						
							| 56 | 38 51 | subcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℂ ) | 
						
							| 57 | 56 51 | subnegd | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 )  −  - 𝑋 )  =  ( ( 𝐵  −  𝑋 )  +  𝑋 ) ) | 
						
							| 58 | 38 51 | npcand | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 )  +  𝑋 )  =  𝐵 ) | 
						
							| 59 | 57 58 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 )  −  - 𝑋 )  =  𝐵 ) | 
						
							| 60 | 55 59 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  −  𝑋 )  −  - 𝑋 ) [,] ( ( 𝐵  −  𝑋 )  −  - 𝑋 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 61 | 60 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  =  ( ( ( 𝐴  −  𝑋 )  −  - 𝑋 ) [,] ( ( 𝐵  −  𝑋 )  −  - 𝑋 ) ) ) | 
						
							| 62 | 61 | itgeq1d | ⊢ ( 𝜑  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  −  𝑋 )  −  - 𝑋 ) [,] ( ( 𝐵  −  𝑋 )  −  - 𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  −  𝑋 )  −  - 𝑋 ) [,] ( ( 𝐵  −  𝑋 )  −  - 𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 64 | 1 4 | resubcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 66 | 2 4 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 68 |  | eqid | ⊢ ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) )  =  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) ) | 
						
							| 69 | 4 | renegcld | ⊢ ( 𝜑  →  - 𝑋  ∈  ℝ ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  - 𝑋  ∈  ℝ ) | 
						
							| 71 | 4 | lt0neg1d | ⊢ ( 𝜑  →  ( 𝑋  <  0  ↔  0  <  - 𝑋 ) ) | 
						
							| 72 | 71 | biimpa | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  0  <  - 𝑋 ) | 
						
							| 73 | 70 72 | elrpd | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  - 𝑋  ∈  ℝ+ ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑝 ‘ 𝑗 ) ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +  1 )  =  ( 𝑗  +  1 ) ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 77 | 74 76 | breq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 78 | 77 | cbvralvw | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 79 | 78 | anbi2i | ⊢ ( ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 80 | 79 | a1i | ⊢ ( 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  →  ( ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 81 | 80 | rabbiia | ⊢ { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  =  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } | 
						
							| 82 | 81 | mpteq2i | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 83 | 13 82 | eqtri | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  −  𝑋 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 84 | 5 6 7 | fourierdlem11 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 ) ) | 
						
							| 85 | 84 | simp3d | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 86 | 1 2 4 85 | ltsub1dd | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  <  ( 𝐵  −  𝑋 ) ) | 
						
							| 87 | 3 5 6 7 64 66 86 13 14 15 16 | fourierdlem54 | ⊢ ( 𝜑  →  ( ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) )  ∧  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) ) ) | 
						
							| 88 | 87 | simpld | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 89 | 88 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  𝑁  ∈  ℕ ) | 
						
							| 91 | 88 | simprd | ⊢ ( 𝜑  →  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) | 
						
							| 93 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 94 | 38 34 51 | nnncan2d | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 95 | 94 3 | eqtr4di | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) )  =  𝑇 ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝜑  →  ( 𝑥  +  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) ) )  =  ( 𝑥  +  𝑇 ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  +  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) ) )  =  ( 𝑥  +  𝑇 ) ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) ) ) | 
						
							| 99 | 98 9 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 100 | 99 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  0 )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  ( ( 𝐵  −  𝑋 )  −  ( 𝐴  −  𝑋 ) ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 101 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 102 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 103 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 104 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 105 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 106 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 107 | 64 | rexrd | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℝ* ) | 
						
							| 108 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 109 | 108 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 110 | 66 | ltpnfd | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  <  +∞ ) | 
						
							| 111 | 107 109 66 86 110 | eliood | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐵  −  𝑋 )  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) ) | 
						
							| 113 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  =  ( 𝑦  +  ( 𝑘  ·  𝑇 ) ) ) | 
						
							| 114 | 113 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 115 | 114 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄  ↔  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 ) ) | 
						
							| 116 | 115 | cbvrabv | ⊢ { 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 }  =  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } | 
						
							| 117 | 116 | uneq2i | ⊢ ( { ( 𝐴  −  𝑋 ) ,  ( 𝐵  −  𝑋 ) }  ∪  { 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } )  =  ( { ( 𝐴  −  𝑋 ) ,  ( 𝐵  −  𝑋 ) }  ∪  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 118 | 14 117 | eqtri | ⊢ 𝐻  =  ( { ( 𝐴  −  𝑋 ) ,  ( 𝐵  −  𝑋 ) }  ∪  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 119 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑗  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 120 |  | eqid | ⊢ ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 121 |  | eqid | ⊢ ( 𝐹  ↾  ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  =  ( 𝐹  ↾  ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 122 |  | eqid | ⊢ ( 𝑦  ∈  ( ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ‘ ( 𝑦  −  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ) )  =  ( 𝑦  ∈  ( ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ‘ ( 𝑦  −  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ) ) | 
						
							| 123 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 124 | 123 | breq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) )  ↔  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) | 
						
							| 125 | 124 | cbvrabv | ⊢ { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) }  =  { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } | 
						
							| 126 | 125 | supeq1i | ⊢ sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  )  =  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) | 
						
							| 127 | 126 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑗  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑗 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) )  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 128 | 19 127 | eqtri | ⊢ 𝐼  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 129 | 5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128 | fourierdlem90 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 130 | 129 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  0 )  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 131 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 132 |  | eqid | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 ) | 
						
							| 133 | 5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132 | fourierdlem89 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  =  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 134 | 133 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  0 )  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  =  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 135 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 136 |  | eqid | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) | 
						
							| 137 | 5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136 | fourierdlem91 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 138 | 137 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  0 )  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 139 | 65 67 68 73 83 90 92 93 100 130 134 138 | fourierdlem108 | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  ∫ ( ( ( 𝐴  −  𝑋 )  −  - 𝑋 ) [,] ( ( 𝐵  −  𝑋 )  −  - 𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 140 | 63 139 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑋  <  0 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 141 | 44 50 140 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑋 )  ∧  ¬  𝑋  =  0 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 142 | 43 141 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  0  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 143 | 32 142 | pm2.61dan | ⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) |