Metamath Proof Explorer


Theorem fourierdlem109

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem109.a φA
fourierdlem109.b φB
fourierdlem109.t T=BA
fourierdlem109.x φX
fourierdlem109.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem109.m φM
fourierdlem109.q φQPM
fourierdlem109.f φF:
fourierdlem109.fper φxFx+T=Fx
fourierdlem109.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem109.r φi0..^MRFQiQi+1limQi
fourierdlem109.l φi0..^MLFQiQi+1limQi+1
fourierdlem109.o O=mp0m|p0=AXpm=BXi0..^mpi<pi+1
fourierdlem109.h H=AXBXxAXBX|kx+kTranQ
fourierdlem109.n N=H1
fourierdlem109.16 S=ιf|fIsom<,<0NH
fourierdlem109.17 E=xx+BxTT
fourierdlem109.18 J=yABify=BAy
fourierdlem109.19 I=xsupj0..^M|QjJEx<
Assertion fourierdlem109 φAXBXFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 fourierdlem109.a φA
2 fourierdlem109.b φB
3 fourierdlem109.t T=BA
4 fourierdlem109.x φX
5 fourierdlem109.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
6 fourierdlem109.m φM
7 fourierdlem109.q φQPM
8 fourierdlem109.f φF:
9 fourierdlem109.fper φxFx+T=Fx
10 fourierdlem109.fcn φi0..^MFQiQi+1:QiQi+1cn
11 fourierdlem109.r φi0..^MRFQiQi+1limQi
12 fourierdlem109.l φi0..^MLFQiQi+1limQi+1
13 fourierdlem109.o O=mp0m|p0=AXpm=BXi0..^mpi<pi+1
14 fourierdlem109.h H=AXBXxAXBX|kx+kTranQ
15 fourierdlem109.n N=H1
16 fourierdlem109.16 S=ιf|fIsom<,<0NH
17 fourierdlem109.17 E=xx+BxTT
18 fourierdlem109.18 J=yABify=BAy
19 fourierdlem109.19 I=xsupj0..^M|QjJEx<
20 1 adantr φ0<XA
21 2 adantr φ0<XB
22 4 adantr φ0<XX
23 simpr φ0<X0<X
24 22 23 elrpd φ0<XX+
25 6 adantr φ0<XM
26 7 adantr φ0<XQPM
27 8 adantr φ0<XF:
28 9 adantlr φ0<XxFx+T=Fx
29 10 adantlr φ0<Xi0..^MFQiQi+1:QiQi+1cn
30 11 adantlr φ0<Xi0..^MRFQiQi+1limQi
31 12 adantlr φ0<Xi0..^MLFQiQi+1limQi+1
32 20 21 3 24 5 25 26 27 28 29 30 31 fourierdlem108 φ0<XAXBXFxdx=ABFxdx
33 oveq2 X=0AX=A0
34 1 recnd φA
35 34 subid1d φA0=A
36 33 35 sylan9eqr φX=0AX=A
37 oveq2 X=0BX=B0
38 2 recnd φB
39 38 subid1d φB0=B
40 37 39 sylan9eqr φX=0BX=B
41 36 40 oveq12d φX=0AXBX=AB
42 41 itgeq1d φX=0AXBXFxdx=ABFxdx
43 42 adantlr φ¬0<XX=0AXBXFxdx=ABFxdx
44 simpll φ¬0<X¬X=0φ
45 44 4 syl φ¬0<X¬X=0X
46 0red φ¬0<X¬X=00
47 simpr φ¬0<X¬X=0¬X=0
48 47 neqned φ¬0<X¬X=0X0
49 simplr φ¬0<X¬X=0¬0<X
50 45 46 48 49 lttri5d φ¬0<X¬X=0X<0
51 4 recnd φX
52 34 51 subcld φAX
53 52 51 subnegd φA-X-X=A-X+X
54 34 51 npcand φA-X+X=A
55 53 54 eqtrd φA-X-X=A
56 38 51 subcld φBX
57 56 51 subnegd φB-X-X=B-X+X
58 38 51 npcand φB-X+X=B
59 57 58 eqtrd φB-X-X=B
60 55 59 oveq12d φA-X-XB-X-X=AB
61 60 eqcomd φAB=A-X-XB-X-X
62 61 itgeq1d φABFxdx=A-X-XB-X-XFxdx
63 62 adantr φX<0ABFxdx=A-X-XB-X-XFxdx
64 1 4 resubcld φAX
65 64 adantr φX<0AX
66 2 4 resubcld φBX
67 66 adantr φX<0BX
68 eqid B-X-AX=B-X-AX
69 4 renegcld φX
70 69 adantr φX<0X
71 4 lt0neg1d φX<00<X
72 71 biimpa φX<00<X
73 70 72 elrpd φX<0X+
74 fveq2 i=jpi=pj
75 oveq1 i=ji+1=j+1
76 75 fveq2d i=jpi+1=pj+1
77 74 76 breq12d i=jpi<pi+1pj<pj+1
78 77 cbvralvw i0..^mpi<pi+1j0..^mpj<pj+1
79 78 anbi2i p0=AXpm=BXi0..^mpi<pi+1p0=AXpm=BXj0..^mpj<pj+1
80 79 a1i p0mp0=AXpm=BXi0..^mpi<pi+1p0=AXpm=BXj0..^mpj<pj+1
81 80 rabbiia p0m|p0=AXpm=BXi0..^mpi<pi+1=p0m|p0=AXpm=BXj0..^mpj<pj+1
82 81 mpteq2i mp0m|p0=AXpm=BXi0..^mpi<pi+1=mp0m|p0=AXpm=BXj0..^mpj<pj+1
83 13 82 eqtri O=mp0m|p0=AXpm=BXj0..^mpj<pj+1
84 5 6 7 fourierdlem11 φABA<B
85 84 simp3d φA<B
86 1 2 4 85 ltsub1dd φAX<BX
87 3 5 6 7 64 66 86 13 14 15 16 fourierdlem54 φNSONSIsom<,<0NH
88 87 simpld φNSON
89 88 simpld φN
90 89 adantr φX<0N
91 88 simprd φSON
92 91 adantr φX<0SON
93 8 adantr φX<0F:
94 38 34 51 nnncan2d φB-X-AX=BA
95 94 3 eqtr4di φB-X-AX=T
96 95 oveq2d φx+BX-AX=x+T
97 96 adantr φxx+BX-AX=x+T
98 97 fveq2d φxFx+BX-AX=Fx+T
99 98 9 eqtrd φxFx+BX-AX=Fx
100 99 adantlr φX<0xFx+BX-AX=Fx
101 6 adantr φj0..^NM
102 7 adantr φj0..^NQPM
103 8 adantr φj0..^NF:
104 9 adantlr φj0..^NxFx+T=Fx
105 10 adantlr φj0..^Ni0..^MFQiQi+1:QiQi+1cn
106 64 adantr φj0..^NAX
107 64 rexrd φAX*
108 pnfxr +∞*
109 108 a1i φ+∞*
110 66 ltpnfd φBX<+∞
111 107 109 66 86 110 eliood φBXAX+∞
112 111 adantr φj0..^NBXAX+∞
113 oveq1 x=yx+kT=y+kT
114 113 eleq1d x=yx+kTranQy+kTranQ
115 114 rexbidv x=ykx+kTranQky+kTranQ
116 115 cbvrabv xAXBX|kx+kTranQ=yAXBX|ky+kTranQ
117 116 uneq2i AXBXxAXBX|kx+kTranQ=AXBXyAXBX|ky+kTranQ
118 14 117 eqtri H=AXBXyAXBX|ky+kTranQ
119 simpr φj0..^Nj0..^N
120 eqid Sj+1ESj+1=Sj+1ESj+1
121 eqid FJESjESj+1=FJESjESj+1
122 eqid yJESj+Sj+1-ESj+1ESj+1+Sj+1-ESj+1FJESjESj+1ySj+1ESj+1=yJESj+Sj+1-ESj+1ESj+1+Sj+1-ESj+1FJESjESj+1ySj+1ESj+1
123 fveq2 j=iQj=Qi
124 123 breq1d j=iQjJExQiJEx
125 124 cbvrabv j0..^M|QjJEx=i0..^M|QiJEx
126 125 supeq1i supj0..^M|QjJEx<=supi0..^M|QiJEx<
127 126 mpteq2i xsupj0..^M|QjJEx<=xsupi0..^M|QiJEx<
128 19 127 eqtri I=xsupi0..^M|QiJEx<
129 5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128 fourierdlem90 φj0..^NFSjSj+1:SjSj+1cn
130 129 adantlr φX<0j0..^NFSjSj+1:SjSj+1cn
131 11 adantlr φj0..^Ni0..^MRFQiQi+1limQi
132 eqid i0..^MR=i0..^MR
133 5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132 fourierdlem89 φj0..^NifJESj=QISji0..^MRISjFJESjFSjSj+1limSj
134 133 adantlr φX<0j0..^NifJESj=QISji0..^MRISjFJESjFSjSj+1limSj
135 12 adantlr φj0..^Ni0..^MLFQiQi+1limQi+1
136 eqid i0..^ML=i0..^ML
137 5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136 fourierdlem91 φj0..^NifESj+1=QISj+1i0..^MLISjFESj+1FSjSj+1limSj+1
138 137 adantlr φX<0j0..^NifESj+1=QISj+1i0..^MLISjFESj+1FSjSj+1limSj+1
139 65 67 68 73 83 90 92 93 100 130 134 138 fourierdlem108 φX<0A-X-XB-X-XFxdx=AXBXFxdx
140 63 139 eqtr2d φX<0AXBXFxdx=ABFxdx
141 44 50 140 syl2anc φ¬0<X¬X=0AXBXFxdx=ABFxdx
142 43 141 pm2.61dan φ¬0<XAXBXFxdx=ABFxdx
143 32 142 pm2.61dan φAXBXFxdx=ABFxdx