| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem109.a |
|
| 2 |
|
fourierdlem109.b |
|
| 3 |
|
fourierdlem109.t |
|
| 4 |
|
fourierdlem109.x |
|
| 5 |
|
fourierdlem109.p |
|
| 6 |
|
fourierdlem109.m |
|
| 7 |
|
fourierdlem109.q |
|
| 8 |
|
fourierdlem109.f |
|
| 9 |
|
fourierdlem109.fper |
|
| 10 |
|
fourierdlem109.fcn |
|
| 11 |
|
fourierdlem109.r |
|
| 12 |
|
fourierdlem109.l |
|
| 13 |
|
fourierdlem109.o |
|
| 14 |
|
fourierdlem109.h |
|
| 15 |
|
fourierdlem109.n |
|
| 16 |
|
fourierdlem109.16 |
|
| 17 |
|
fourierdlem109.17 |
|
| 18 |
|
fourierdlem109.18 |
|
| 19 |
|
fourierdlem109.19 |
|
| 20 |
1
|
adantr |
|
| 21 |
2
|
adantr |
|
| 22 |
4
|
adantr |
|
| 23 |
|
simpr |
|
| 24 |
22 23
|
elrpd |
|
| 25 |
6
|
adantr |
|
| 26 |
7
|
adantr |
|
| 27 |
8
|
adantr |
|
| 28 |
9
|
adantlr |
|
| 29 |
10
|
adantlr |
|
| 30 |
11
|
adantlr |
|
| 31 |
12
|
adantlr |
|
| 32 |
20 21 3 24 5 25 26 27 28 29 30 31
|
fourierdlem108 |
|
| 33 |
|
oveq2 |
|
| 34 |
1
|
recnd |
|
| 35 |
34
|
subid1d |
|
| 36 |
33 35
|
sylan9eqr |
|
| 37 |
|
oveq2 |
|
| 38 |
2
|
recnd |
|
| 39 |
38
|
subid1d |
|
| 40 |
37 39
|
sylan9eqr |
|
| 41 |
36 40
|
oveq12d |
|
| 42 |
41
|
itgeq1d |
|
| 43 |
42
|
adantlr |
|
| 44 |
|
simpll |
|
| 45 |
44 4
|
syl |
|
| 46 |
|
0red |
|
| 47 |
|
simpr |
|
| 48 |
47
|
neqned |
|
| 49 |
|
simplr |
|
| 50 |
45 46 48 49
|
lttri5d |
|
| 51 |
4
|
recnd |
|
| 52 |
34 51
|
subcld |
|
| 53 |
52 51
|
subnegd |
|
| 54 |
34 51
|
npcand |
|
| 55 |
53 54
|
eqtrd |
|
| 56 |
38 51
|
subcld |
|
| 57 |
56 51
|
subnegd |
|
| 58 |
38 51
|
npcand |
|
| 59 |
57 58
|
eqtrd |
|
| 60 |
55 59
|
oveq12d |
|
| 61 |
60
|
eqcomd |
|
| 62 |
61
|
itgeq1d |
|
| 63 |
62
|
adantr |
|
| 64 |
1 4
|
resubcld |
|
| 65 |
64
|
adantr |
|
| 66 |
2 4
|
resubcld |
|
| 67 |
66
|
adantr |
|
| 68 |
|
eqid |
|
| 69 |
4
|
renegcld |
|
| 70 |
69
|
adantr |
|
| 71 |
4
|
lt0neg1d |
|
| 72 |
71
|
biimpa |
|
| 73 |
70 72
|
elrpd |
|
| 74 |
|
fveq2 |
|
| 75 |
|
oveq1 |
|
| 76 |
75
|
fveq2d |
|
| 77 |
74 76
|
breq12d |
|
| 78 |
77
|
cbvralvw |
|
| 79 |
78
|
anbi2i |
|
| 80 |
79
|
a1i |
|
| 81 |
80
|
rabbiia |
|
| 82 |
81
|
mpteq2i |
|
| 83 |
13 82
|
eqtri |
|
| 84 |
5 6 7
|
fourierdlem11 |
|
| 85 |
84
|
simp3d |
|
| 86 |
1 2 4 85
|
ltsub1dd |
|
| 87 |
3 5 6 7 64 66 86 13 14 15 16
|
fourierdlem54 |
|
| 88 |
87
|
simpld |
|
| 89 |
88
|
simpld |
|
| 90 |
89
|
adantr |
|
| 91 |
88
|
simprd |
|
| 92 |
91
|
adantr |
|
| 93 |
8
|
adantr |
|
| 94 |
38 34 51
|
nnncan2d |
|
| 95 |
94 3
|
eqtr4di |
|
| 96 |
95
|
oveq2d |
|
| 97 |
96
|
adantr |
|
| 98 |
97
|
fveq2d |
|
| 99 |
98 9
|
eqtrd |
|
| 100 |
99
|
adantlr |
|
| 101 |
6
|
adantr |
|
| 102 |
7
|
adantr |
|
| 103 |
8
|
adantr |
|
| 104 |
9
|
adantlr |
|
| 105 |
10
|
adantlr |
|
| 106 |
64
|
adantr |
|
| 107 |
64
|
rexrd |
|
| 108 |
|
pnfxr |
|
| 109 |
108
|
a1i |
|
| 110 |
66
|
ltpnfd |
|
| 111 |
107 109 66 86 110
|
eliood |
|
| 112 |
111
|
adantr |
|
| 113 |
|
oveq1 |
|
| 114 |
113
|
eleq1d |
|
| 115 |
114
|
rexbidv |
|
| 116 |
115
|
cbvrabv |
|
| 117 |
116
|
uneq2i |
|
| 118 |
14 117
|
eqtri |
|
| 119 |
|
simpr |
|
| 120 |
|
eqid |
|
| 121 |
|
eqid |
|
| 122 |
|
eqid |
|
| 123 |
|
fveq2 |
|
| 124 |
123
|
breq1d |
|
| 125 |
124
|
cbvrabv |
|
| 126 |
125
|
supeq1i |
|
| 127 |
126
|
mpteq2i |
|
| 128 |
19 127
|
eqtri |
|
| 129 |
5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128
|
fourierdlem90 |
|
| 130 |
129
|
adantlr |
|
| 131 |
11
|
adantlr |
|
| 132 |
|
eqid |
|
| 133 |
5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132
|
fourierdlem89 |
|
| 134 |
133
|
adantlr |
|
| 135 |
12
|
adantlr |
|
| 136 |
|
eqid |
|
| 137 |
5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136
|
fourierdlem91 |
|
| 138 |
137
|
adantlr |
|
| 139 |
65 67 68 73 83 90 92 93 100 130 134 138
|
fourierdlem108 |
|
| 140 |
63 139
|
eqtr2d |
|
| 141 |
44 50 140
|
syl2anc |
|
| 142 |
43 141
|
pm2.61dan |
|
| 143 |
32 142
|
pm2.61dan |
|