| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem109.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem109.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem109.t |  |-  T = ( B - A ) | 
						
							| 4 |  | fourierdlem109.x |  |-  ( ph -> X e. RR ) | 
						
							| 5 |  | fourierdlem109.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem109.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | fourierdlem109.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 8 |  | fourierdlem109.f |  |-  ( ph -> F : RR --> CC ) | 
						
							| 9 |  | fourierdlem109.fper |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 10 |  | fourierdlem109.fcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 11 |  | fourierdlem109.r |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 12 |  | fourierdlem109.l |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 13 |  | fourierdlem109.o |  |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 14 |  | fourierdlem109.h |  |-  H = ( { ( A - X ) , ( B - X ) } u. { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
							| 15 |  | fourierdlem109.n |  |-  N = ( ( # ` H ) - 1 ) | 
						
							| 16 |  | fourierdlem109.16 |  |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) | 
						
							| 17 |  | fourierdlem109.17 |  |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) | 
						
							| 18 |  | fourierdlem109.18 |  |-  J = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) | 
						
							| 19 |  | fourierdlem109.19 |  |-  I = ( x e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) | 
						
							| 20 | 1 | adantr |  |-  ( ( ph /\ 0 < X ) -> A e. RR ) | 
						
							| 21 | 2 | adantr |  |-  ( ( ph /\ 0 < X ) -> B e. RR ) | 
						
							| 22 | 4 | adantr |  |-  ( ( ph /\ 0 < X ) -> X e. RR ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ 0 < X ) -> 0 < X ) | 
						
							| 24 | 22 23 | elrpd |  |-  ( ( ph /\ 0 < X ) -> X e. RR+ ) | 
						
							| 25 | 6 | adantr |  |-  ( ( ph /\ 0 < X ) -> M e. NN ) | 
						
							| 26 | 7 | adantr |  |-  ( ( ph /\ 0 < X ) -> Q e. ( P ` M ) ) | 
						
							| 27 | 8 | adantr |  |-  ( ( ph /\ 0 < X ) -> F : RR --> CC ) | 
						
							| 28 | 9 | adantlr |  |-  ( ( ( ph /\ 0 < X ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 29 | 10 | adantlr |  |-  ( ( ( ph /\ 0 < X ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 30 | 11 | adantlr |  |-  ( ( ( ph /\ 0 < X ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 31 | 12 | adantlr |  |-  ( ( ( ph /\ 0 < X ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 32 | 20 21 3 24 5 25 26 27 28 29 30 31 | fourierdlem108 |  |-  ( ( ph /\ 0 < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 33 |  | oveq2 |  |-  ( X = 0 -> ( A - X ) = ( A - 0 ) ) | 
						
							| 34 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 35 | 34 | subid1d |  |-  ( ph -> ( A - 0 ) = A ) | 
						
							| 36 | 33 35 | sylan9eqr |  |-  ( ( ph /\ X = 0 ) -> ( A - X ) = A ) | 
						
							| 37 |  | oveq2 |  |-  ( X = 0 -> ( B - X ) = ( B - 0 ) ) | 
						
							| 38 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 39 | 38 | subid1d |  |-  ( ph -> ( B - 0 ) = B ) | 
						
							| 40 | 37 39 | sylan9eqr |  |-  ( ( ph /\ X = 0 ) -> ( B - X ) = B ) | 
						
							| 41 | 36 40 | oveq12d |  |-  ( ( ph /\ X = 0 ) -> ( ( A - X ) [,] ( B - X ) ) = ( A [,] B ) ) | 
						
							| 42 | 41 | itgeq1d |  |-  ( ( ph /\ X = 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 43 | 42 | adantlr |  |-  ( ( ( ph /\ -. 0 < X ) /\ X = 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 44 |  | simpll |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> ph ) | 
						
							| 45 | 44 4 | syl |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> X e. RR ) | 
						
							| 46 |  | 0red |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> 0 e. RR ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> -. X = 0 ) | 
						
							| 48 | 47 | neqned |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> X =/= 0 ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> -. 0 < X ) | 
						
							| 50 | 45 46 48 49 | lttri5d |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> X < 0 ) | 
						
							| 51 | 4 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 52 | 34 51 | subcld |  |-  ( ph -> ( A - X ) e. CC ) | 
						
							| 53 | 52 51 | subnegd |  |-  ( ph -> ( ( A - X ) - -u X ) = ( ( A - X ) + X ) ) | 
						
							| 54 | 34 51 | npcand |  |-  ( ph -> ( ( A - X ) + X ) = A ) | 
						
							| 55 | 53 54 | eqtrd |  |-  ( ph -> ( ( A - X ) - -u X ) = A ) | 
						
							| 56 | 38 51 | subcld |  |-  ( ph -> ( B - X ) e. CC ) | 
						
							| 57 | 56 51 | subnegd |  |-  ( ph -> ( ( B - X ) - -u X ) = ( ( B - X ) + X ) ) | 
						
							| 58 | 38 51 | npcand |  |-  ( ph -> ( ( B - X ) + X ) = B ) | 
						
							| 59 | 57 58 | eqtrd |  |-  ( ph -> ( ( B - X ) - -u X ) = B ) | 
						
							| 60 | 55 59 | oveq12d |  |-  ( ph -> ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) = ( A [,] B ) ) | 
						
							| 61 | 60 | eqcomd |  |-  ( ph -> ( A [,] B ) = ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ) | 
						
							| 62 | 61 | itgeq1d |  |-  ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ( F ` x ) _d x ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ph /\ X < 0 ) -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ( F ` x ) _d x ) | 
						
							| 64 | 1 4 | resubcld |  |-  ( ph -> ( A - X ) e. RR ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ X < 0 ) -> ( A - X ) e. RR ) | 
						
							| 66 | 2 4 | resubcld |  |-  ( ph -> ( B - X ) e. RR ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ X < 0 ) -> ( B - X ) e. RR ) | 
						
							| 68 |  | eqid |  |-  ( ( B - X ) - ( A - X ) ) = ( ( B - X ) - ( A - X ) ) | 
						
							| 69 | 4 | renegcld |  |-  ( ph -> -u X e. RR ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ X < 0 ) -> -u X e. RR ) | 
						
							| 71 | 4 | lt0neg1d |  |-  ( ph -> ( X < 0 <-> 0 < -u X ) ) | 
						
							| 72 | 71 | biimpa |  |-  ( ( ph /\ X < 0 ) -> 0 < -u X ) | 
						
							| 73 | 70 72 | elrpd |  |-  ( ( ph /\ X < 0 ) -> -u X e. RR+ ) | 
						
							| 74 |  | fveq2 |  |-  ( i = j -> ( p ` i ) = ( p ` j ) ) | 
						
							| 75 |  | oveq1 |  |-  ( i = j -> ( i + 1 ) = ( j + 1 ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( i = j -> ( p ` ( i + 1 ) ) = ( p ` ( j + 1 ) ) ) | 
						
							| 77 | 74 76 | breq12d |  |-  ( i = j -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( p ` j ) < ( p ` ( j + 1 ) ) ) ) | 
						
							| 78 | 77 | cbvralvw |  |-  ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) | 
						
							| 79 | 78 | anbi2i |  |-  ( ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) | 
						
							| 80 | 79 | a1i |  |-  ( p e. ( RR ^m ( 0 ... m ) ) -> ( ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) ) | 
						
							| 81 | 80 | rabbiia |  |-  { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } | 
						
							| 82 | 81 | mpteq2i |  |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 83 | 13 82 | eqtri |  |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 84 | 5 6 7 | fourierdlem11 |  |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) | 
						
							| 85 | 84 | simp3d |  |-  ( ph -> A < B ) | 
						
							| 86 | 1 2 4 85 | ltsub1dd |  |-  ( ph -> ( A - X ) < ( B - X ) ) | 
						
							| 87 | 3 5 6 7 64 66 86 13 14 15 16 | fourierdlem54 |  |-  ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , H ) ) ) | 
						
							| 88 | 87 | simpld |  |-  ( ph -> ( N e. NN /\ S e. ( O ` N ) ) ) | 
						
							| 89 | 88 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 90 | 89 | adantr |  |-  ( ( ph /\ X < 0 ) -> N e. NN ) | 
						
							| 91 | 88 | simprd |  |-  ( ph -> S e. ( O ` N ) ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ph /\ X < 0 ) -> S e. ( O ` N ) ) | 
						
							| 93 | 8 | adantr |  |-  ( ( ph /\ X < 0 ) -> F : RR --> CC ) | 
						
							| 94 | 38 34 51 | nnncan2d |  |-  ( ph -> ( ( B - X ) - ( A - X ) ) = ( B - A ) ) | 
						
							| 95 | 94 3 | eqtr4di |  |-  ( ph -> ( ( B - X ) - ( A - X ) ) = T ) | 
						
							| 96 | 95 | oveq2d |  |-  ( ph -> ( x + ( ( B - X ) - ( A - X ) ) ) = ( x + T ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ph /\ x e. RR ) -> ( x + ( ( B - X ) - ( A - X ) ) ) = ( x + T ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + ( ( B - X ) - ( A - X ) ) ) ) = ( F ` ( x + T ) ) ) | 
						
							| 99 | 98 9 | eqtrd |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + ( ( B - X ) - ( A - X ) ) ) ) = ( F ` x ) ) | 
						
							| 100 | 99 | adantlr |  |-  ( ( ( ph /\ X < 0 ) /\ x e. RR ) -> ( F ` ( x + ( ( B - X ) - ( A - X ) ) ) ) = ( F ` x ) ) | 
						
							| 101 | 6 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> M e. NN ) | 
						
							| 102 | 7 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> Q e. ( P ` M ) ) | 
						
							| 103 | 8 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> F : RR --> CC ) | 
						
							| 104 | 9 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 105 | 10 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 106 | 64 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) e. RR ) | 
						
							| 107 | 64 | rexrd |  |-  ( ph -> ( A - X ) e. RR* ) | 
						
							| 108 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 109 | 108 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 110 | 66 | ltpnfd |  |-  ( ph -> ( B - X ) < +oo ) | 
						
							| 111 | 107 109 66 86 110 | eliood |  |-  ( ph -> ( B - X ) e. ( ( A - X ) (,) +oo ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( B - X ) e. ( ( A - X ) (,) +oo ) ) | 
						
							| 113 |  | oveq1 |  |-  ( x = y -> ( x + ( k x. T ) ) = ( y + ( k x. T ) ) ) | 
						
							| 114 | 113 | eleq1d |  |-  ( x = y -> ( ( x + ( k x. T ) ) e. ran Q <-> ( y + ( k x. T ) ) e. ran Q ) ) | 
						
							| 115 | 114 | rexbidv |  |-  ( x = y -> ( E. k e. ZZ ( x + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. T ) ) e. ran Q ) ) | 
						
							| 116 | 115 | cbvrabv |  |-  { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } = { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } | 
						
							| 117 | 116 | uneq2i |  |-  ( { ( A - X ) , ( B - X ) } u. { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) = ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
							| 118 | 14 117 | eqtri |  |-  H = ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
							| 119 |  | simpr |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> j e. ( 0 ..^ N ) ) | 
						
							| 120 |  | eqid |  |-  ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) | 
						
							| 121 |  | eqid |  |-  ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) = ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) | 
						
							| 122 |  | eqid |  |-  ( y e. ( ( ( J ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) = ( y e. ( ( ( J ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) | 
						
							| 123 |  | fveq2 |  |-  ( j = i -> ( Q ` j ) = ( Q ` i ) ) | 
						
							| 124 | 123 | breq1d |  |-  ( j = i -> ( ( Q ` j ) <_ ( J ` ( E ` x ) ) <-> ( Q ` i ) <_ ( J ` ( E ` x ) ) ) ) | 
						
							| 125 | 124 | cbvrabv |  |-  { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } = { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } | 
						
							| 126 | 125 | supeq1i |  |-  sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } , RR , < ) = sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } , RR , < ) | 
						
							| 127 | 126 | mpteq2i |  |-  ( x e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) | 
						
							| 128 | 19 127 | eqtri |  |-  I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) | 
						
							| 129 | 5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128 | fourierdlem90 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 130 | 129 | adantlr |  |-  ( ( ( ph /\ X < 0 ) /\ j e. ( 0 ..^ N ) ) -> ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 131 | 11 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 132 |  | eqid |  |-  ( i e. ( 0 ..^ M ) |-> R ) = ( i e. ( 0 ..^ M ) |-> R ) | 
						
							| 133 | 5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132 | fourierdlem89 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( J ` ( E ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` j ) ) ) , ( ( i e. ( 0 ..^ M ) |-> R ) ` ( I ` ( S ` j ) ) ) , ( F ` ( J ` ( E ` ( S ` j ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) | 
						
							| 134 | 133 | adantlr |  |-  ( ( ( ph /\ X < 0 ) /\ j e. ( 0 ..^ N ) ) -> if ( ( J ` ( E ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` j ) ) ) , ( ( i e. ( 0 ..^ M ) |-> R ) ` ( I ` ( S ` j ) ) ) , ( F ` ( J ` ( E ` ( S ` j ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) | 
						
							| 135 | 12 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 136 |  | eqid |  |-  ( i e. ( 0 ..^ M ) |-> L ) = ( i e. ( 0 ..^ M ) |-> L ) | 
						
							| 137 | 5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136 | fourierdlem91 |  |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( E ` ( S ` ( j + 1 ) ) ) = ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) , ( ( i e. ( 0 ..^ M ) |-> L ) ` ( I ` ( S ` j ) ) ) , ( F ` ( E ` ( S ` ( j + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) | 
						
							| 138 | 137 | adantlr |  |-  ( ( ( ph /\ X < 0 ) /\ j e. ( 0 ..^ N ) ) -> if ( ( E ` ( S ` ( j + 1 ) ) ) = ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) , ( ( i e. ( 0 ..^ M ) |-> L ) ` ( I ` ( S ` j ) ) ) , ( F ` ( E ` ( S ` ( j + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) | 
						
							| 139 | 65 67 68 73 83 90 92 93 100 130 134 138 | fourierdlem108 |  |-  ( ( ph /\ X < 0 ) -> S. ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ( F ` x ) _d x = S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) | 
						
							| 140 | 63 139 | eqtr2d |  |-  ( ( ph /\ X < 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 141 | 44 50 140 | syl2anc |  |-  ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 142 | 43 141 | pm2.61dan |  |-  ( ( ph /\ -. 0 < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) | 
						
							| 143 | 32 142 | pm2.61dan |  |-  ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |