| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem110.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem110.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem110.t |  |-  T = ( B - A ) | 
						
							| 4 |  | fourierdlem110.x |  |-  ( ph -> X e. RR ) | 
						
							| 5 |  | fourierdlem110.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem110.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | fourierdlem110.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 8 |  | fourierdlem110.f |  |-  ( ph -> F : RR --> CC ) | 
						
							| 9 |  | fourierdlem110.fper |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 10 |  | fourierdlem110.fcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 11 |  | fourierdlem110.r |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 12 |  | fourierdlem110.l |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 14 |  | oveq1 |  |-  ( y = x -> ( y + ( k x. T ) ) = ( x + ( k x. T ) ) ) | 
						
							| 15 | 14 | eleq1d |  |-  ( y = x -> ( ( y + ( k x. T ) ) e. ran Q <-> ( x + ( k x. T ) ) e. ran Q ) ) | 
						
							| 16 | 15 | rexbidv |  |-  ( y = x -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( x + ( k x. T ) ) e. ran Q ) ) | 
						
							| 17 | 16 | cbvrabv |  |-  { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } | 
						
							| 18 | 17 | uneq2i |  |-  ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( A - X ) , ( B - X ) } u. { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
							| 19 |  | oveq1 |  |-  ( l = k -> ( l x. T ) = ( k x. T ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( l = k -> ( y + ( l x. T ) ) = ( y + ( k x. T ) ) ) | 
						
							| 21 | 20 | eleq1d |  |-  ( l = k -> ( ( y + ( l x. T ) ) e. ran Q <-> ( y + ( k x. T ) ) e. ran Q ) ) | 
						
							| 22 | 21 | cbvrexvw |  |-  ( E. l e. ZZ ( y + ( l x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. T ) ) e. ran Q ) | 
						
							| 23 | 22 | a1i |  |-  ( y e. ( ( A - X ) [,] ( B - X ) ) -> ( E. l e. ZZ ( y + ( l x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. T ) ) e. ran Q ) ) | 
						
							| 24 | 23 | rabbiia |  |-  { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } = { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } | 
						
							| 25 | 24 | uneq2i |  |-  ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) = ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
							| 26 | 25 | fveq2i |  |-  ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) = ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) | 
						
							| 27 | 26 | oveq1i |  |-  ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
							| 28 |  | isoeq5 |  |-  ( ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) = ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 29 | 25 28 | ax-mp |  |-  ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 30 |  | isoeq1 |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 31 | 29 30 | bitrid |  |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 32 | 31 | cbviotavw |  |-  ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 33 |  | id |  |-  ( y = x -> y = x ) | 
						
							| 34 |  | oveq2 |  |-  ( y = x -> ( B - y ) = ( B - x ) ) | 
						
							| 35 | 34 | oveq1d |  |-  ( y = x -> ( ( B - y ) / T ) = ( ( B - x ) / T ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( y = x -> ( |_ ` ( ( B - y ) / T ) ) = ( |_ ` ( ( B - x ) / T ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( y = x -> ( ( |_ ` ( ( B - y ) / T ) ) x. T ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) | 
						
							| 38 | 33 37 | oveq12d |  |-  ( y = x -> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) | 
						
							| 39 | 38 | cbvmptv |  |-  ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) | 
						
							| 40 |  | eqeq1 |  |-  ( y = w -> ( y = B <-> w = B ) ) | 
						
							| 41 |  | id |  |-  ( y = w -> y = w ) | 
						
							| 42 | 40 41 | ifbieq2d |  |-  ( y = w -> if ( y = B , A , y ) = if ( w = B , A , w ) ) | 
						
							| 43 | 42 | cbvmptv |  |-  ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) = ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) | 
						
							| 44 |  | fveq2 |  |-  ( z = x -> ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` z ) = ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` x ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( z = x -> ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` z ) ) = ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` x ) ) ) | 
						
							| 46 | 45 | breq2d |  |-  ( z = x -> ( ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` z ) ) <-> ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` x ) ) ) ) | 
						
							| 47 | 46 | rabbidv |  |-  ( z = x -> { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` z ) ) } = { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` x ) ) } ) | 
						
							| 48 | 47 | supeq1d |  |-  ( z = x -> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` z ) ) } , RR , < ) = sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` x ) ) } , RR , < ) ) | 
						
							| 49 | 48 | cbvmptv |  |-  ( z e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` z ) ) } , RR , < ) ) = ( x e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) ` ( ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) ` x ) ) } , RR , < ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 18 27 32 39 43 49 | fourierdlem109 |  |-  ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |