| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem111.a |  |-  A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( cos ` ( n x. t ) ) ) _d t / _pi ) ) | 
						
							| 2 |  | fourierdlem111.b |  |-  B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( sin ` ( n x. t ) ) ) _d t / _pi ) ) | 
						
							| 3 |  | fourierdlem111.s |  |-  S = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 4 |  | fourierdlem111.d |  |-  D = ( n e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 5 |  | fourierdlem111.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem111.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | fourierdlem111.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 8 |  | fourierdlem111.x |  |-  ( ph -> X e. RR ) | 
						
							| 9 |  | fourierdlem111.6 |  |-  ( ph -> F : RR --> RR ) | 
						
							| 10 |  | fourierdlem111.fper |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 11 |  | fourierdlem111.g |  |-  G = ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) | 
						
							| 12 |  | fourierdlem111.fcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 13 |  | fourierdlem111.r |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 14 |  | fourierdlem111.l |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 15 |  | fourierdlem111.t |  |-  T = ( 2 x. _pi ) | 
						
							| 16 |  | fourierdlem111.o |  |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi - X ) /\ ( p ` m ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 17 |  | fourierdlem111.14 |  |-  W = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) | 
						
							| 18 |  | eleq1 |  |-  ( k = n -> ( k e. NN <-> n e. NN ) ) | 
						
							| 19 | 18 | anbi2d |  |-  ( k = n -> ( ( ph /\ k e. NN ) <-> ( ph /\ n e. NN ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( k = n -> ( S ` k ) = ( S ` n ) ) | 
						
							| 21 |  | fveq2 |  |-  ( k = n -> ( D ` k ) = ( D ` n ) ) | 
						
							| 22 | 21 | fveq1d |  |-  ( k = n -> ( ( D ` k ) ` ( t - X ) ) = ( ( D ` n ) ` ( t - X ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( k = n -> ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) = ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( k = n /\ t e. ( -u _pi (,) _pi ) ) -> ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) = ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) | 
						
							| 25 | 24 | itgeq2dv |  |-  ( k = n -> S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) | 
						
							| 26 | 20 25 | eqeq12d |  |-  ( k = n -> ( ( S ` k ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t <-> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) ) | 
						
							| 27 | 19 26 | imbi12d |  |-  ( k = n -> ( ( ( ph /\ k e. NN ) -> ( S ` k ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t ) <-> ( ( ph /\ n e. NN ) -> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) ) ) | 
						
							| 28 | 9 | adantr |  |-  ( ( ph /\ k e. NN ) -> F : RR --> RR ) | 
						
							| 29 |  | eqid |  |-  ( -u _pi (,) _pi ) = ( -u _pi (,) _pi ) | 
						
							| 30 |  | ioossre |  |-  ( -u _pi (,) _pi ) C_ RR | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( -u _pi (,) _pi ) C_ RR ) | 
						
							| 32 | 9 31 | feqresmpt |  |-  ( ph -> ( F |` ( -u _pi (,) _pi ) ) = ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) ) | 
						
							| 33 |  | ioossicc |  |-  ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 35 |  | ioombl |  |-  ( -u _pi (,) _pi ) e. dom vol | 
						
							| 36 | 35 | a1i |  |-  ( ph -> ( -u _pi (,) _pi ) e. dom vol ) | 
						
							| 37 | 9 | adantr |  |-  ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) | 
						
							| 38 |  | pire |  |-  _pi e. RR | 
						
							| 39 | 38 | renegcli |  |-  -u _pi e. RR | 
						
							| 40 | 39 38 | elicc2i |  |-  ( t e. ( -u _pi [,] _pi ) <-> ( t e. RR /\ -u _pi <_ t /\ t <_ _pi ) ) | 
						
							| 41 | 40 | simp1bi |  |-  ( t e. ( -u _pi [,] _pi ) -> t e. RR ) | 
						
							| 42 | 41 | ssriv |  |-  ( -u _pi [,] _pi ) C_ RR | 
						
							| 43 | 42 | a1i |  |-  ( ph -> ( -u _pi [,] _pi ) C_ RR ) | 
						
							| 44 | 43 | sselda |  |-  ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) | 
						
							| 45 | 37 44 | ffvelcdmd |  |-  ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( F ` x ) e. RR ) | 
						
							| 46 | 9 43 | feqresmpt |  |-  ( ph -> ( F |` ( -u _pi [,] _pi ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) ) | 
						
							| 47 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 48 | 47 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 49 | 9 48 | fssd |  |-  ( ph -> F : RR --> CC ) | 
						
							| 50 | 49 43 | fssresd |  |-  ( ph -> ( F |` ( -u _pi [,] _pi ) ) : ( -u _pi [,] _pi ) --> CC ) | 
						
							| 51 |  | ioossicc |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) | 
						
							| 52 | 39 | rexri |  |-  -u _pi e. RR* | 
						
							| 53 | 52 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) | 
						
							| 54 | 38 | rexri |  |-  _pi e. RR* | 
						
							| 55 | 54 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) | 
						
							| 56 | 5 6 7 | fourierdlem15 |  |-  ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 59 | 53 55 57 58 | fourierdlem8 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 60 | 51 59 | sstrid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 61 | 60 | resabs1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 62 | 61 12 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 63 | 61 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 64 | 13 63 | eleqtrrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 65 | 61 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 66 | 14 65 | eleqtrrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 67 | 5 6 7 50 62 64 66 | fourierdlem69 |  |-  ( ph -> ( F |` ( -u _pi [,] _pi ) ) e. L^1 ) | 
						
							| 68 | 46 67 | eqeltrrd |  |-  ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 69 | 34 36 45 68 | iblss |  |-  ( ph -> ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 70 | 32 69 | eqeltrd |  |-  ( ph -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) | 
						
							| 72 | 8 | adantr |  |-  ( ( ph /\ k e. NN ) -> X e. RR ) | 
						
							| 73 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 74 | 28 29 71 1 2 72 3 4 73 | fourierdlem83 |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t ) | 
						
							| 75 | 27 74 | chvarvv |  |-  ( ( ph /\ n e. NN ) -> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) | 
						
							| 76 | 39 | a1i |  |-  ( ( ph /\ n e. NN ) -> -u _pi e. RR ) | 
						
							| 77 | 38 | a1i |  |-  ( ( ph /\ n e. NN ) -> _pi e. RR ) | 
						
							| 78 | 49 | adantr |  |-  ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> F : RR --> CC ) | 
						
							| 79 | 41 | adantl |  |-  ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> t e. RR ) | 
						
							| 80 | 78 79 | ffvelcdmd |  |-  ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> ( F ` t ) e. CC ) | 
						
							| 81 | 80 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( F ` t ) e. CC ) | 
						
							| 82 | 4 | dirkerf |  |-  ( n e. NN -> ( D ` n ) : RR --> RR ) | 
						
							| 83 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( D ` n ) : RR --> RR ) | 
						
							| 84 | 8 | adantr |  |-  ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> X e. RR ) | 
						
							| 85 | 79 84 | resubcld |  |-  ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> ( t - X ) e. RR ) | 
						
							| 86 | 85 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( t - X ) e. RR ) | 
						
							| 87 | 83 86 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` ( t - X ) ) e. RR ) | 
						
							| 88 | 87 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` ( t - X ) ) e. CC ) | 
						
							| 89 | 81 88 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) e. CC ) | 
						
							| 90 | 76 77 89 | itgioo |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( -u _pi [,] _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) | 
						
							| 91 |  | fvres |  |-  ( t e. ( -u _pi [,] _pi ) -> ( ( F |` ( -u _pi [,] _pi ) ) ` t ) = ( F ` t ) ) | 
						
							| 92 | 91 | eqcomd |  |-  ( t e. ( -u _pi [,] _pi ) -> ( F ` t ) = ( ( F |` ( -u _pi [,] _pi ) ) ` t ) ) | 
						
							| 93 | 92 | oveq1d |  |-  ( t e. ( -u _pi [,] _pi ) -> ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) | 
						
							| 95 | 94 | itgeq2dv |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( -u _pi [,] _pi ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) | 
						
							| 96 |  | simpl |  |-  ( ( n = m /\ y e. RR ) -> n = m ) | 
						
							| 97 | 96 | oveq2d |  |-  ( ( n = m /\ y e. RR ) -> ( 2 x. n ) = ( 2 x. m ) ) | 
						
							| 98 | 97 | oveq1d |  |-  ( ( n = m /\ y e. RR ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. m ) + 1 ) ) | 
						
							| 99 | 98 | oveq1d |  |-  ( ( n = m /\ y e. RR ) -> ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) ) | 
						
							| 100 | 96 | oveq1d |  |-  ( ( n = m /\ y e. RR ) -> ( n + ( 1 / 2 ) ) = ( m + ( 1 / 2 ) ) ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( n = m /\ y e. RR ) -> ( ( n + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. y ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ( n = m /\ y e. RR ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ( n = m /\ y e. RR ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) | 
						
							| 104 | 99 103 | ifeq12d |  |-  ( ( n = m /\ y e. RR ) -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) | 
						
							| 105 | 104 | mpteq2dva |  |-  ( n = m -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 106 | 105 | cbvmptv |  |-  ( n e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 107 | 4 106 | eqtri |  |-  D = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 108 |  | fveq2 |  |-  ( s = t -> ( ( F |` ( -u _pi [,] _pi ) ) ` s ) = ( ( F |` ( -u _pi [,] _pi ) ) ` t ) ) | 
						
							| 109 |  | oveq1 |  |-  ( s = t -> ( s - X ) = ( t - X ) ) | 
						
							| 110 | 109 | fveq2d |  |-  ( s = t -> ( ( D ` n ) ` ( s - X ) ) = ( ( D ` n ) ` ( t - X ) ) ) | 
						
							| 111 | 108 110 | oveq12d |  |-  ( s = t -> ( ( ( F |` ( -u _pi [,] _pi ) ) ` s ) x. ( ( D ` n ) ` ( s - X ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) | 
						
							| 112 | 111 | cbvmptv |  |-  ( s e. ( -u _pi [,] _pi ) |-> ( ( ( F |` ( -u _pi [,] _pi ) ) ` s ) x. ( ( D ` n ) ` ( s - X ) ) ) ) = ( t e. ( -u _pi [,] _pi ) |-> ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) | 
						
							| 113 | 7 | adantr |  |-  ( ( ph /\ n e. NN ) -> Q e. ( P ` M ) ) | 
						
							| 114 | 6 | adantr |  |-  ( ( ph /\ n e. NN ) -> M e. NN ) | 
						
							| 115 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 116 | 8 | adantr |  |-  ( ( ph /\ n e. NN ) -> X e. RR ) | 
						
							| 117 | 50 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( F |` ( -u _pi [,] _pi ) ) : ( -u _pi [,] _pi ) --> CC ) | 
						
							| 118 | 62 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 119 | 64 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 120 | 66 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 121 | 107 5 112 113 114 115 116 117 118 119 120 | fourierdlem101 |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) | 
						
							| 122 |  | oveq2 |  |-  ( s = y -> ( X + s ) = ( X + y ) ) | 
						
							| 123 | 122 | fveq2d |  |-  ( s = y -> ( F ` ( X + s ) ) = ( F ` ( X + y ) ) ) | 
						
							| 124 |  | fveq2 |  |-  ( s = y -> ( ( D ` n ) ` s ) = ( ( D ` n ) ` y ) ) | 
						
							| 125 | 123 124 | oveq12d |  |-  ( s = y -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) ) | 
						
							| 126 | 125 | cbvitgv |  |-  S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y | 
						
							| 127 | 126 | a1i |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) | 
						
							| 128 | 39 | a1i |  |-  ( ph -> -u _pi e. RR ) | 
						
							| 129 | 128 8 | resubcld |  |-  ( ph -> ( -u _pi - X ) e. RR ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( -u _pi - X ) e. RR ) | 
						
							| 131 | 38 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 132 | 131 8 | resubcld |  |-  ( ph -> ( _pi - X ) e. RR ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( _pi - X ) e. RR ) | 
						
							| 134 | 49 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> F : RR --> CC ) | 
						
							| 135 | 8 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> X e. RR ) | 
						
							| 136 |  | simpr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) | 
						
							| 137 | 129 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( -u _pi - X ) e. RR ) | 
						
							| 138 | 132 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( _pi - X ) e. RR ) | 
						
							| 139 |  | elicc2 |  |-  ( ( ( -u _pi - X ) e. RR /\ ( _pi - X ) e. RR ) -> ( y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) <-> ( y e. RR /\ ( -u _pi - X ) <_ y /\ y <_ ( _pi - X ) ) ) ) | 
						
							| 140 | 137 138 139 | syl2anc |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) <-> ( y e. RR /\ ( -u _pi - X ) <_ y /\ y <_ ( _pi - X ) ) ) ) | 
						
							| 141 | 136 140 | mpbid |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( y e. RR /\ ( -u _pi - X ) <_ y /\ y <_ ( _pi - X ) ) ) | 
						
							| 142 | 141 | simp1d |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y e. RR ) | 
						
							| 143 | 135 142 | readdcld |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) e. RR ) | 
						
							| 144 | 134 143 | ffvelcdmd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) e. CC ) | 
						
							| 145 | 144 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) e. CC ) | 
						
							| 146 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( D ` n ) : RR --> RR ) | 
						
							| 147 | 142 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y e. RR ) | 
						
							| 148 | 146 147 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( D ` n ) ` y ) e. RR ) | 
						
							| 149 | 148 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( D ` n ) ` y ) e. CC ) | 
						
							| 150 | 145 149 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) e. CC ) | 
						
							| 151 | 130 133 150 | itgioo |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) | 
						
							| 152 | 39 | a1i |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> -u _pi e. RR ) | 
						
							| 153 | 38 | a1i |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> _pi e. RR ) | 
						
							| 154 | 8 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 155 | 131 | recnd |  |-  ( ph -> _pi e. CC ) | 
						
							| 156 | 155 | negcld |  |-  ( ph -> -u _pi e. CC ) | 
						
							| 157 | 154 156 | pncan3d |  |-  ( ph -> ( X + ( -u _pi - X ) ) = -u _pi ) | 
						
							| 158 | 157 | eqcomd |  |-  ( ph -> -u _pi = ( X + ( -u _pi - X ) ) ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> -u _pi = ( X + ( -u _pi - X ) ) ) | 
						
							| 160 | 141 | simp2d |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( -u _pi - X ) <_ y ) | 
						
							| 161 | 137 142 135 160 | leadd2dd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + ( -u _pi - X ) ) <_ ( X + y ) ) | 
						
							| 162 | 159 161 | eqbrtrd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> -u _pi <_ ( X + y ) ) | 
						
							| 163 | 141 | simp3d |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y <_ ( _pi - X ) ) | 
						
							| 164 | 142 138 135 163 | leadd2dd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) <_ ( X + ( _pi - X ) ) ) | 
						
							| 165 | 154 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> X e. CC ) | 
						
							| 166 | 155 | adantr |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> _pi e. CC ) | 
						
							| 167 | 165 166 | pncan3d |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + ( _pi - X ) ) = _pi ) | 
						
							| 168 | 164 167 | breqtrd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) <_ _pi ) | 
						
							| 169 | 152 153 143 162 168 | eliccd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) e. ( -u _pi [,] _pi ) ) | 
						
							| 170 |  | fvres |  |-  ( ( X + y ) e. ( -u _pi [,] _pi ) -> ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) | 
						
							| 171 | 169 170 | syl |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) | 
						
							| 172 | 171 | eqcomd |  |-  ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) = ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) ) | 
						
							| 173 | 172 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) = ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) ) | 
						
							| 174 | 173 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) ) | 
						
							| 175 | 174 | itgeq2dv |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) | 
						
							| 176 | 127 151 175 | 3eqtrrd |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 177 | 121 176 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 178 | 90 95 177 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 179 |  | elioore |  |-  ( s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) -> s e. RR ) | 
						
							| 180 | 179 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> s e. RR ) | 
						
							| 181 | 49 | adantr |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> F : RR --> CC ) | 
						
							| 182 | 8 | adantr |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> X e. RR ) | 
						
							| 183 | 179 | adantl |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> s e. RR ) | 
						
							| 184 | 182 183 | readdcld |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( X + s ) e. RR ) | 
						
							| 185 | 181 184 | ffvelcdmd |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 186 | 185 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 187 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( D ` n ) : RR --> RR ) | 
						
							| 188 | 187 180 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 189 | 188 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( D ` n ) ` s ) e. CC ) | 
						
							| 190 | 186 189 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) | 
						
							| 191 |  | oveq2 |  |-  ( x = s -> ( X + x ) = ( X + s ) ) | 
						
							| 192 | 191 | fveq2d |  |-  ( x = s -> ( F ` ( X + x ) ) = ( F ` ( X + s ) ) ) | 
						
							| 193 |  | fveq2 |  |-  ( x = s -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` s ) ) | 
						
							| 194 | 192 193 | oveq12d |  |-  ( x = s -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 195 | 194 | cbvmptv |  |-  ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) = ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 196 | 11 195 | eqtri |  |-  G = ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 197 | 196 | fvmpt2 |  |-  ( ( s e. RR /\ ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 198 | 180 190 197 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 199 | 198 | eqcomd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) | 
						
							| 200 | 199 | itgeq2dv |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( G ` s ) _d s ) | 
						
							| 201 | 49 | adantr |  |-  ( ( ph /\ x e. RR ) -> F : RR --> CC ) | 
						
							| 202 | 8 | adantr |  |-  ( ( ph /\ x e. RR ) -> X e. RR ) | 
						
							| 203 |  | simpr |  |-  ( ( ph /\ x e. RR ) -> x e. RR ) | 
						
							| 204 | 202 203 | readdcld |  |-  ( ( ph /\ x e. RR ) -> ( X + x ) e. RR ) | 
						
							| 205 | 201 204 | ffvelcdmd |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( X + x ) ) e. CC ) | 
						
							| 206 | 205 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` ( X + x ) ) e. CC ) | 
						
							| 207 | 82 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) : RR --> RR ) | 
						
							| 208 | 207 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` x ) e. RR ) | 
						
							| 209 | 208 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` x ) e. CC ) | 
						
							| 210 | 206 209 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) e. CC ) | 
						
							| 211 | 210 11 | fmptd |  |-  ( ( ph /\ n e. NN ) -> G : RR --> CC ) | 
						
							| 212 | 211 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> G : RR --> CC ) | 
						
							| 213 | 129 | adantr |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( -u _pi - X ) e. RR ) | 
						
							| 214 | 132 | adantr |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( _pi - X ) e. RR ) | 
						
							| 215 |  | simpr |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) | 
						
							| 216 |  | eliccre |  |-  ( ( ( -u _pi - X ) e. RR /\ ( _pi - X ) e. RR /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. RR ) | 
						
							| 217 | 213 214 215 216 | syl3anc |  |-  ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. RR ) | 
						
							| 218 | 217 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. RR ) | 
						
							| 219 | 212 218 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( G ` s ) e. CC ) | 
						
							| 220 | 130 133 219 | itgioo |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( G ` s ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` s ) _d s ) | 
						
							| 221 |  | fveq2 |  |-  ( s = x -> ( G ` s ) = ( G ` x ) ) | 
						
							| 222 | 221 | cbvitgv |  |-  S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` s ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x | 
						
							| 223 | 220 222 | eqtrdi |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( G ` s ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x ) | 
						
							| 224 | 200 223 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x ) | 
						
							| 225 |  | eqid |  |-  ( ( _pi - X ) - ( -u _pi - X ) ) = ( ( _pi - X ) - ( -u _pi - X ) ) | 
						
							| 226 | 116 | renegcld |  |-  ( ( ph /\ n e. NN ) -> -u X e. RR ) | 
						
							| 227 | 5 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 228 | 6 227 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 229 | 7 228 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 230 | 229 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 231 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 232 | 230 231 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 233 | 232 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 234 | 8 | adantr |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) | 
						
							| 235 | 233 234 | resubcld |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) - X ) e. RR ) | 
						
							| 236 | 235 17 | fmptd |  |-  ( ph -> W : ( 0 ... M ) --> RR ) | 
						
							| 237 |  | reex |  |-  RR e. _V | 
						
							| 238 |  | ovex |  |-  ( 0 ... M ) e. _V | 
						
							| 239 | 237 238 | pm3.2i |  |-  ( RR e. _V /\ ( 0 ... M ) e. _V ) | 
						
							| 240 |  | elmapg |  |-  ( ( RR e. _V /\ ( 0 ... M ) e. _V ) -> ( W e. ( RR ^m ( 0 ... M ) ) <-> W : ( 0 ... M ) --> RR ) ) | 
						
							| 241 | 239 240 | mp1i |  |-  ( ph -> ( W e. ( RR ^m ( 0 ... M ) ) <-> W : ( 0 ... M ) --> RR ) ) | 
						
							| 242 | 236 241 | mpbird |  |-  ( ph -> W e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 243 | 17 | a1i |  |-  ( ph -> W = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) ) | 
						
							| 244 |  | fveq2 |  |-  ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) | 
						
							| 245 | 229 | simprd |  |-  ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 246 | 245 | simpld |  |-  ( ph -> ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) ) | 
						
							| 247 | 246 | simpld |  |-  ( ph -> ( Q ` 0 ) = -u _pi ) | 
						
							| 248 | 244 247 | sylan9eqr |  |-  ( ( ph /\ i = 0 ) -> ( Q ` i ) = -u _pi ) | 
						
							| 249 | 248 | oveq1d |  |-  ( ( ph /\ i = 0 ) -> ( ( Q ` i ) - X ) = ( -u _pi - X ) ) | 
						
							| 250 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 251 | 6 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 252 |  | 0red |  |-  ( M e. NN -> 0 e. RR ) | 
						
							| 253 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 254 |  | nngt0 |  |-  ( M e. NN -> 0 < M ) | 
						
							| 255 | 252 253 254 | ltled |  |-  ( M e. NN -> 0 <_ M ) | 
						
							| 256 | 6 255 | syl |  |-  ( ph -> 0 <_ M ) | 
						
							| 257 |  | eluz2 |  |-  ( M e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 <_ M ) ) | 
						
							| 258 | 250 251 256 257 | syl3anbrc |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 259 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 260 | 258 259 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 261 | 243 249 260 129 | fvmptd |  |-  ( ph -> ( W ` 0 ) = ( -u _pi - X ) ) | 
						
							| 262 |  | fveq2 |  |-  ( i = M -> ( Q ` i ) = ( Q ` M ) ) | 
						
							| 263 | 246 | simprd |  |-  ( ph -> ( Q ` M ) = _pi ) | 
						
							| 264 | 262 263 | sylan9eqr |  |-  ( ( ph /\ i = M ) -> ( Q ` i ) = _pi ) | 
						
							| 265 | 264 | oveq1d |  |-  ( ( ph /\ i = M ) -> ( ( Q ` i ) - X ) = ( _pi - X ) ) | 
						
							| 266 |  | eluzfz2 |  |-  ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) | 
						
							| 267 | 258 266 | syl |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 268 | 243 265 267 132 | fvmptd |  |-  ( ph -> ( W ` M ) = ( _pi - X ) ) | 
						
							| 269 | 261 268 | jca |  |-  ( ph -> ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) ) | 
						
							| 270 | 232 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 271 |  | elfzofz |  |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) | 
						
							| 272 | 271 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 273 | 270 272 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 274 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 275 | 274 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 276 | 270 275 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 277 | 8 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) | 
						
							| 278 | 245 | simprd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 279 | 278 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 280 | 273 276 277 279 | ltsub1dd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - X ) < ( ( Q ` ( i + 1 ) ) - X ) ) | 
						
							| 281 | 272 235 | syldan |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - X ) e. RR ) | 
						
							| 282 | 17 | fvmpt2 |  |-  ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) - X ) e. RR ) -> ( W ` i ) = ( ( Q ` i ) - X ) ) | 
						
							| 283 | 272 281 282 | syl2anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) = ( ( Q ` i ) - X ) ) | 
						
							| 284 |  | fveq2 |  |-  ( i = j -> ( Q ` i ) = ( Q ` j ) ) | 
						
							| 285 | 284 | oveq1d |  |-  ( i = j -> ( ( Q ` i ) - X ) = ( ( Q ` j ) - X ) ) | 
						
							| 286 | 285 | cbvmptv |  |-  ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) | 
						
							| 287 | 17 286 | eqtri |  |-  W = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) | 
						
							| 288 | 287 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> W = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) ) | 
						
							| 289 |  | fveq2 |  |-  ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 290 | 289 | oveq1d |  |-  ( j = ( i + 1 ) -> ( ( Q ` j ) - X ) = ( ( Q ` ( i + 1 ) ) - X ) ) | 
						
							| 291 | 290 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) - X ) = ( ( Q ` ( i + 1 ) ) - X ) ) | 
						
							| 292 | 276 277 | resubcld |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - X ) e. RR ) | 
						
							| 293 | 288 291 275 292 | fvmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) - X ) ) | 
						
							| 294 | 280 283 293 | 3brtr4d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) < ( W ` ( i + 1 ) ) ) | 
						
							| 295 | 294 | ralrimiva |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) | 
						
							| 296 | 242 269 295 | jca32 |  |-  ( ph -> ( W e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 297 | 16 | fourierdlem2 |  |-  ( M e. NN -> ( W e. ( O ` M ) <-> ( W e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) ) ) ) | 
						
							| 298 | 6 297 | syl |  |-  ( ph -> ( W e. ( O ` M ) <-> ( W e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) ) ) ) | 
						
							| 299 | 296 298 | mpbird |  |-  ( ph -> W e. ( O ` M ) ) | 
						
							| 300 | 299 | adantr |  |-  ( ( ph /\ n e. NN ) -> W e. ( O ` M ) ) | 
						
							| 301 | 155 156 154 | nnncan2d |  |-  ( ph -> ( ( _pi - X ) - ( -u _pi - X ) ) = ( _pi - -u _pi ) ) | 
						
							| 302 |  | picn |  |-  _pi e. CC | 
						
							| 303 | 302 | 2timesi |  |-  ( 2 x. _pi ) = ( _pi + _pi ) | 
						
							| 304 | 302 302 | subnegi |  |-  ( _pi - -u _pi ) = ( _pi + _pi ) | 
						
							| 305 | 303 15 304 | 3eqtr4i |  |-  T = ( _pi - -u _pi ) | 
						
							| 306 | 301 305 | eqtr4di |  |-  ( ph -> ( ( _pi - X ) - ( -u _pi - X ) ) = T ) | 
						
							| 307 | 306 | oveq2d |  |-  ( ph -> ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) = ( x + T ) ) | 
						
							| 308 | 307 | fveq2d |  |-  ( ph -> ( G ` ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` ( x + T ) ) ) | 
						
							| 309 | 308 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` ( x + T ) ) ) | 
						
							| 310 |  | simpr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) | 
						
							| 311 | 11 | fvmpt2 |  |-  ( ( x e. RR /\ ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) e. CC ) -> ( G ` x ) = ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) | 
						
							| 312 | 310 210 311 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` x ) = ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) | 
						
							| 313 | 154 | adantr |  |-  ( ( ph /\ x e. RR ) -> X e. CC ) | 
						
							| 314 | 203 | recnd |  |-  ( ( ph /\ x e. RR ) -> x e. CC ) | 
						
							| 315 |  | 2re |  |-  2 e. RR | 
						
							| 316 | 315 38 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 317 | 15 316 | eqeltri |  |-  T e. RR | 
						
							| 318 | 317 | a1i |  |-  ( ph -> T e. RR ) | 
						
							| 319 | 318 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 320 | 319 | adantr |  |-  ( ( ph /\ x e. RR ) -> T e. CC ) | 
						
							| 321 | 313 314 320 | addassd |  |-  ( ( ph /\ x e. RR ) -> ( ( X + x ) + T ) = ( X + ( x + T ) ) ) | 
						
							| 322 | 321 | eqcomd |  |-  ( ( ph /\ x e. RR ) -> ( X + ( x + T ) ) = ( ( X + x ) + T ) ) | 
						
							| 323 | 322 | fveq2d |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( X + ( x + T ) ) ) = ( F ` ( ( X + x ) + T ) ) ) | 
						
							| 324 |  | simpl |  |-  ( ( ph /\ x e. RR ) -> ph ) | 
						
							| 325 | 324 204 | jca |  |-  ( ( ph /\ x e. RR ) -> ( ph /\ ( X + x ) e. RR ) ) | 
						
							| 326 |  | eleq1 |  |-  ( s = ( X + x ) -> ( s e. RR <-> ( X + x ) e. RR ) ) | 
						
							| 327 | 326 | anbi2d |  |-  ( s = ( X + x ) -> ( ( ph /\ s e. RR ) <-> ( ph /\ ( X + x ) e. RR ) ) ) | 
						
							| 328 |  | oveq1 |  |-  ( s = ( X + x ) -> ( s + T ) = ( ( X + x ) + T ) ) | 
						
							| 329 | 328 | fveq2d |  |-  ( s = ( X + x ) -> ( F ` ( s + T ) ) = ( F ` ( ( X + x ) + T ) ) ) | 
						
							| 330 |  | fveq2 |  |-  ( s = ( X + x ) -> ( F ` s ) = ( F ` ( X + x ) ) ) | 
						
							| 331 | 329 330 | eqeq12d |  |-  ( s = ( X + x ) -> ( ( F ` ( s + T ) ) = ( F ` s ) <-> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) ) | 
						
							| 332 | 327 331 | imbi12d |  |-  ( s = ( X + x ) -> ( ( ( ph /\ s e. RR ) -> ( F ` ( s + T ) ) = ( F ` s ) ) <-> ( ( ph /\ ( X + x ) e. RR ) -> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) ) ) | 
						
							| 333 |  | eleq1 |  |-  ( x = s -> ( x e. RR <-> s e. RR ) ) | 
						
							| 334 | 333 | anbi2d |  |-  ( x = s -> ( ( ph /\ x e. RR ) <-> ( ph /\ s e. RR ) ) ) | 
						
							| 335 |  | oveq1 |  |-  ( x = s -> ( x + T ) = ( s + T ) ) | 
						
							| 336 | 335 | fveq2d |  |-  ( x = s -> ( F ` ( x + T ) ) = ( F ` ( s + T ) ) ) | 
						
							| 337 |  | fveq2 |  |-  ( x = s -> ( F ` x ) = ( F ` s ) ) | 
						
							| 338 | 336 337 | eqeq12d |  |-  ( x = s -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( s + T ) ) = ( F ` s ) ) ) | 
						
							| 339 | 334 338 | imbi12d |  |-  ( x = s -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ s e. RR ) -> ( F ` ( s + T ) ) = ( F ` s ) ) ) ) | 
						
							| 340 | 339 10 | chvarvv |  |-  ( ( ph /\ s e. RR ) -> ( F ` ( s + T ) ) = ( F ` s ) ) | 
						
							| 341 | 332 340 | vtoclg |  |-  ( ( X + x ) e. RR -> ( ( ph /\ ( X + x ) e. RR ) -> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) ) | 
						
							| 342 | 204 325 341 | sylc |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) | 
						
							| 343 | 323 342 | eqtr2d |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( X + x ) ) = ( F ` ( X + ( x + T ) ) ) ) | 
						
							| 344 | 343 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` ( X + x ) ) = ( F ` ( X + ( x + T ) ) ) ) | 
						
							| 345 | 4 15 | dirkerper |  |-  ( ( n e. NN /\ x e. RR ) -> ( ( D ` n ) ` ( x + T ) ) = ( ( D ` n ) ` x ) ) | 
						
							| 346 | 345 | eqcomd |  |-  ( ( n e. NN /\ x e. RR ) -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` ( x + T ) ) ) | 
						
							| 347 | 346 | adantll |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` ( x + T ) ) ) | 
						
							| 348 | 344 347 | oveq12d |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) | 
						
							| 349 | 196 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> G = ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) ) | 
						
							| 350 |  | oveq2 |  |-  ( s = ( x + T ) -> ( X + s ) = ( X + ( x + T ) ) ) | 
						
							| 351 | 350 | fveq2d |  |-  ( s = ( x + T ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( x + T ) ) ) ) | 
						
							| 352 |  | fveq2 |  |-  ( s = ( x + T ) -> ( ( D ` n ) ` s ) = ( ( D ` n ) ` ( x + T ) ) ) | 
						
							| 353 | 351 352 | oveq12d |  |-  ( s = ( x + T ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) | 
						
							| 354 | 353 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ x e. RR ) /\ s = ( x + T ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) | 
						
							| 355 | 317 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> T e. RR ) | 
						
							| 356 | 310 355 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x + T ) e. RR ) | 
						
							| 357 | 317 | a1i |  |-  ( ( ph /\ x e. RR ) -> T e. RR ) | 
						
							| 358 | 203 357 | readdcld |  |-  ( ( ph /\ x e. RR ) -> ( x + T ) e. RR ) | 
						
							| 359 | 202 358 | readdcld |  |-  ( ( ph /\ x e. RR ) -> ( X + ( x + T ) ) e. RR ) | 
						
							| 360 | 201 359 | ffvelcdmd |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( X + ( x + T ) ) ) e. CC ) | 
						
							| 361 | 360 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` ( X + ( x + T ) ) ) e. CC ) | 
						
							| 362 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( D ` n ) : RR --> RR ) | 
						
							| 363 | 362 356 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` ( x + T ) ) e. RR ) | 
						
							| 364 | 363 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` ( x + T ) ) e. CC ) | 
						
							| 365 | 361 364 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) e. CC ) | 
						
							| 366 | 349 354 356 365 | fvmptd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + T ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) | 
						
							| 367 | 366 | eqcomd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) = ( G ` ( x + T ) ) ) | 
						
							| 368 | 312 348 367 | 3eqtrrd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + T ) ) = ( G ` x ) ) | 
						
							| 369 | 309 368 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` x ) ) | 
						
							| 370 | 196 | reseq1i |  |-  ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) | 
						
							| 371 | 370 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 372 |  | ioossre |  |-  ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR | 
						
							| 373 |  | resmpt |  |-  ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR -> ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) ) | 
						
							| 374 | 372 373 | ax-mp |  |-  ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 375 | 371 374 | eqtrdi |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) ) | 
						
							| 376 | 273 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 377 | 376 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 378 | 276 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 379 | 378 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 380 | 8 | adantr |  |-  ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) | 
						
							| 381 |  | elioore |  |-  ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -> s e. RR ) | 
						
							| 382 | 381 | adantl |  |-  ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> s e. RR ) | 
						
							| 383 | 380 382 | readdcld |  |-  ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) | 
						
							| 384 | 383 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) | 
						
							| 385 |  | eleq1 |  |-  ( x = s -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) <-> s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 386 | 385 | anbi2d |  |-  ( x = s -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) <-> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) ) | 
						
							| 387 | 191 | breq2d |  |-  ( x = s -> ( ( Q ` i ) < ( X + x ) <-> ( Q ` i ) < ( X + s ) ) ) | 
						
							| 388 | 386 387 | imbi12d |  |-  ( x = s -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + x ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + s ) ) ) ) | 
						
							| 389 | 154 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) | 
						
							| 390 | 283 281 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. RR ) | 
						
							| 391 | 390 | recnd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. CC ) | 
						
							| 392 | 389 391 | addcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` i ) ) = ( ( W ` i ) + X ) ) | 
						
							| 393 | 283 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) + X ) = ( ( ( Q ` i ) - X ) + X ) ) | 
						
							| 394 | 273 | recnd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) | 
						
							| 395 | 394 389 | npcand |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) - X ) + X ) = ( Q ` i ) ) | 
						
							| 396 | 392 393 395 | 3eqtrrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( X + ( W ` i ) ) ) | 
						
							| 397 | 396 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( X + ( W ` i ) ) ) | 
						
							| 398 | 390 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR ) | 
						
							| 399 |  | elioore |  |-  ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -> x e. RR ) | 
						
							| 400 | 399 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x e. RR ) | 
						
							| 401 | 8 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) | 
						
							| 402 | 390 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. RR* ) | 
						
							| 403 | 402 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR* ) | 
						
							| 404 | 293 292 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. RR ) | 
						
							| 405 | 404 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. RR* ) | 
						
							| 406 | 405 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR* ) | 
						
							| 407 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) | 
						
							| 408 |  | ioogtlb |  |-  ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < x ) | 
						
							| 409 | 403 406 407 408 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < x ) | 
						
							| 410 | 398 400 401 409 | ltadd2dd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` i ) ) < ( X + x ) ) | 
						
							| 411 | 397 410 | eqbrtrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + x ) ) | 
						
							| 412 | 388 411 | chvarvv |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + s ) ) | 
						
							| 413 | 191 | breq1d |  |-  ( x = s -> ( ( X + x ) < ( Q ` ( i + 1 ) ) <-> ( X + s ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 414 | 386 413 | imbi12d |  |-  ( x = s -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 415 | 404 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR ) | 
						
							| 416 |  | iooltub |  |-  ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x < ( W ` ( i + 1 ) ) ) | 
						
							| 417 | 403 406 407 416 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x < ( W ` ( i + 1 ) ) ) | 
						
							| 418 | 400 415 401 417 | ltadd2dd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) < ( X + ( W ` ( i + 1 ) ) ) ) | 
						
							| 419 | 404 | recnd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. CC ) | 
						
							| 420 | 389 419 | addcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( ( W ` ( i + 1 ) ) + X ) ) | 
						
							| 421 | 293 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` ( i + 1 ) ) + X ) = ( ( ( Q ` ( i + 1 ) ) - X ) + X ) ) | 
						
							| 422 | 276 | recnd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) | 
						
							| 423 | 422 389 | npcand |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) - X ) + X ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 424 | 420 421 423 | 3eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 425 | 424 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 426 | 418 425 | breqtrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 427 | 414 426 | chvarvv |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 428 | 377 379 384 412 427 | eliood |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 429 | 191 | cbvmptv |  |-  ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + s ) ) | 
						
							| 430 | 429 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + s ) ) ) | 
						
							| 431 |  | ioossre |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR | 
						
							| 432 | 431 | a1i |  |-  ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 433 | 9 432 | feqresmpt |  |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) | 
						
							| 434 | 433 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) | 
						
							| 435 |  | fveq2 |  |-  ( x = ( X + s ) -> ( F ` x ) = ( F ` ( X + s ) ) ) | 
						
							| 436 | 428 430 434 435 | fmptco |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ) | 
						
							| 437 |  | eqid |  |-  ( x e. CC |-> ( X + x ) ) = ( x e. CC |-> ( X + x ) ) | 
						
							| 438 |  | ssid |  |-  CC C_ CC | 
						
							| 439 | 438 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 440 | 439 154 439 | constcncfg |  |-  ( ph -> ( x e. CC |-> X ) e. ( CC -cn-> CC ) ) | 
						
							| 441 |  | cncfmptid |  |-  ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) | 
						
							| 442 | 438 438 441 | mp2an |  |-  ( x e. CC |-> x ) e. ( CC -cn-> CC ) | 
						
							| 443 | 442 | a1i |  |-  ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) | 
						
							| 444 | 440 443 | addcncf |  |-  ( ph -> ( x e. CC |-> ( X + x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 445 | 444 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. CC |-> ( X + x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 446 |  | ioosscn |  |-  ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ CC | 
						
							| 447 | 446 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ CC ) | 
						
							| 448 |  | ioosscn |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC | 
						
							| 449 | 448 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) | 
						
							| 450 | 376 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 451 | 378 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 452 | 8 | adantr |  |-  ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) | 
						
							| 453 | 399 | adantl |  |-  ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x e. RR ) | 
						
							| 454 | 452 453 | readdcld |  |-  ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. RR ) | 
						
							| 455 | 454 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. RR ) | 
						
							| 456 | 450 451 455 411 426 | eliood |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 457 | 437 445 447 449 456 | cncfmptssg |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 458 | 457 12 | cncfco |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 459 | 436 458 | eqeltrrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 460 | 459 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 461 |  | eqid |  |-  ( s e. RR |-> ( ( D ` n ) ` s ) ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) | 
						
							| 462 | 82 | feqmptd |  |-  ( n e. NN -> ( D ` n ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) ) | 
						
							| 463 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) | 
						
							| 464 | 47 438 463 | mp2an |  |-  ( RR -cn-> RR ) C_ ( RR -cn-> CC ) | 
						
							| 465 | 4 | dirkercncf |  |-  ( n e. NN -> ( D ` n ) e. ( RR -cn-> RR ) ) | 
						
							| 466 | 464 465 | sselid |  |-  ( n e. NN -> ( D ` n ) e. ( RR -cn-> CC ) ) | 
						
							| 467 | 462 466 | eqeltrrd |  |-  ( n e. NN -> ( s e. RR |-> ( ( D ` n ) ` s ) ) e. ( RR -cn-> CC ) ) | 
						
							| 468 | 372 | a1i |  |-  ( n e. NN -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 469 | 438 | a1i |  |-  ( n e. NN -> CC C_ CC ) | 
						
							| 470 |  | cncff |  |-  ( ( D ` n ) e. ( RR -cn-> CC ) -> ( D ` n ) : RR --> CC ) | 
						
							| 471 | 466 470 | syl |  |-  ( n e. NN -> ( D ` n ) : RR --> CC ) | 
						
							| 472 | 471 | adantr |  |-  ( ( n e. NN /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( D ` n ) : RR --> CC ) | 
						
							| 473 | 381 | adantl |  |-  ( ( n e. NN /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> s e. RR ) | 
						
							| 474 | 472 473 | ffvelcdmd |  |-  ( ( n e. NN /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( D ` n ) ` s ) e. CC ) | 
						
							| 475 | 461 467 468 469 474 | cncfmptssg |  |-  ( n e. NN -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( D ` n ) ` s ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 476 | 475 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( D ` n ) ` s ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 477 | 460 476 | mulcncf |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 478 | 375 477 | eqeltrd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 479 | 453 205 | syldan |  |-  ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + x ) ) e. CC ) | 
						
							| 480 | 479 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + x ) ) e. CC ) | 
						
							| 481 |  | eqid |  |-  ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) | 
						
							| 482 | 480 481 | fmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> CC ) | 
						
							| 483 | 482 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> CC ) | 
						
							| 484 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( D ` n ) : RR --> RR ) | 
						
							| 485 | 372 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 486 | 484 485 | fssresd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> RR ) | 
						
							| 487 | 47 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) | 
						
							| 488 | 486 487 | fssd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> CC ) | 
						
							| 489 |  | eqid |  |-  ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) | 
						
							| 490 |  | fdm |  |-  ( F : RR --> CC -> dom F = RR ) | 
						
							| 491 | 49 490 | syl |  |-  ( ph -> dom F = RR ) | 
						
							| 492 | 431 491 | sseqtrrid |  |-  ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) | 
						
							| 493 |  | ssdmres |  |-  ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F <-> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 494 | 492 493 | sylib |  |-  ( ph -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 495 | 494 | eqcomd |  |-  ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 496 | 495 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 497 | 456 496 | eleqtrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 498 | 273 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) | 
						
							| 499 | 498 411 | gtned |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) =/= ( Q ` i ) ) | 
						
							| 500 |  | eldifsn |  |-  ( ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) <-> ( ( X + x ) e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( X + x ) =/= ( Q ` i ) ) ) | 
						
							| 501 | 497 499 500 | sylanbrc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) | 
						
							| 502 | 501 | ralrimiva |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) | 
						
							| 503 |  | eqid |  |-  ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) | 
						
							| 504 | 503 | rnmptss |  |-  ( A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) | 
						
							| 505 | 502 504 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) | 
						
							| 506 |  | eqidd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) | 
						
							| 507 |  | oveq2 |  |-  ( x = ( W ` i ) -> ( X + x ) = ( X + ( W ` i ) ) ) | 
						
							| 508 | 507 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( W ` i ) ) -> ( X + x ) = ( X + ( W ` i ) ) ) | 
						
							| 509 | 390 | leidd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) <_ ( W ` i ) ) | 
						
							| 510 | 390 404 294 | ltled |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) <_ ( W ` ( i + 1 ) ) ) | 
						
							| 511 | 390 404 390 509 510 | eliccd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) | 
						
							| 512 | 396 273 | eqeltrrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` i ) ) e. RR ) | 
						
							| 513 | 506 508 511 512 | fvmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` i ) ) = ( X + ( W ` i ) ) ) | 
						
							| 514 | 396 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` i ) ) = ( Q ` i ) ) | 
						
							| 515 | 513 514 | eqtr2d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` i ) ) ) | 
						
							| 516 | 390 404 | iccssred |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 517 | 516 47 | sstrdi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ CC ) | 
						
							| 518 | 517 | resmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. CC |-> ( X + x ) ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) = ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) | 
						
							| 519 |  | rescncf |  |-  ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ CC -> ( ( x e. CC |-> ( X + x ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( X + x ) ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> CC ) ) ) | 
						
							| 520 | 517 445 519 | sylc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. CC |-> ( X + x ) ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 521 | 518 520 | eqeltrrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 522 | 521 511 | cnlimci |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` i ) ) e. ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) | 
						
							| 523 | 515 522 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) | 
						
							| 524 |  | ioossicc |  |-  ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) | 
						
							| 525 |  | resmpt |  |-  ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) | 
						
							| 526 | 524 525 | ax-mp |  |-  ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) | 
						
							| 527 | 526 | eqcomi |  |-  ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) | 
						
							| 528 | 527 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 529 | 528 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) = ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 530 | 154 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> X e. CC ) | 
						
							| 531 | 390 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR ) | 
						
							| 532 | 404 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR ) | 
						
							| 533 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) | 
						
							| 534 |  | eliccre |  |-  ( ( ( W ` i ) e. RR /\ ( W ` ( i + 1 ) ) e. RR /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. RR ) | 
						
							| 535 | 531 532 533 534 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. RR ) | 
						
							| 536 | 535 | recnd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. CC ) | 
						
							| 537 | 530 536 | addcld |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. CC ) | 
						
							| 538 |  | eqid |  |-  ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) | 
						
							| 539 | 537 538 | fmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) : ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) --> CC ) | 
						
							| 540 | 390 404 294 539 | limciccioolb |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) | 
						
							| 541 | 529 540 | eqtr2d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) | 
						
							| 542 | 523 541 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) | 
						
							| 543 | 505 542 13 | limccog |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` i ) ) ) | 
						
							| 544 | 49 432 | fssresd |  |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 545 | 544 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 546 | 456 503 | fmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 547 |  | fcompt |  |-  ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) ) | 
						
							| 548 | 545 546 547 | syl2anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) ) | 
						
							| 549 |  | eqidd |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) | 
						
							| 550 |  | oveq2 |  |-  ( x = y -> ( X + x ) = ( X + y ) ) | 
						
							| 551 | 550 | adantl |  |-  ( ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) /\ x = y ) -> ( X + x ) = ( X + y ) ) | 
						
							| 552 |  | simpr |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) | 
						
							| 553 | 8 | adantr |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) | 
						
							| 554 | 372 552 | sselid |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. RR ) | 
						
							| 555 | 553 554 | readdcld |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) e. RR ) | 
						
							| 556 | 549 551 552 555 | fvmptd |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) = ( X + y ) ) | 
						
							| 557 | 556 | fveq2d |  |-  ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) ) | 
						
							| 558 | 557 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) ) | 
						
							| 559 | 376 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 560 | 378 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 561 | 555 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) e. RR ) | 
						
							| 562 | 396 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( X + ( W ` i ) ) ) | 
						
							| 563 | 390 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR ) | 
						
							| 564 | 554 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. RR ) | 
						
							| 565 | 8 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) | 
						
							| 566 | 402 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR* ) | 
						
							| 567 | 405 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR* ) | 
						
							| 568 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) | 
						
							| 569 |  | ioogtlb |  |-  ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < y ) | 
						
							| 570 | 566 567 568 569 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < y ) | 
						
							| 571 | 563 564 565 570 | ltadd2dd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` i ) ) < ( X + y ) ) | 
						
							| 572 | 562 571 | eqbrtrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + y ) ) | 
						
							| 573 | 404 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR ) | 
						
							| 574 |  | iooltub |  |-  ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y < ( W ` ( i + 1 ) ) ) | 
						
							| 575 | 566 567 568 574 | syl3anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y < ( W ` ( i + 1 ) ) ) | 
						
							| 576 | 564 573 565 575 | ltadd2dd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) < ( X + ( W ` ( i + 1 ) ) ) ) | 
						
							| 577 | 424 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 578 | 576 577 | breqtrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 579 | 559 560 561 572 578 | eliood |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 580 |  | fvres |  |-  ( ( X + y ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) | 
						
							| 581 | 579 580 | syl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) | 
						
							| 582 | 558 581 | eqtrd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) = ( F ` ( X + y ) ) ) | 
						
							| 583 | 582 | mpteq2dva |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + y ) ) ) ) | 
						
							| 584 | 550 | fveq2d |  |-  ( x = y -> ( F ` ( X + x ) ) = ( F ` ( X + y ) ) ) | 
						
							| 585 | 584 | cbvmptv |  |-  ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + y ) ) ) | 
						
							| 586 | 583 585 | eqtr4di |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ) | 
						
							| 587 | 548 586 | eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ) | 
						
							| 588 | 587 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` i ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` i ) ) ) | 
						
							| 589 | 543 588 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` i ) ) ) | 
						
							| 590 | 589 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` i ) ) ) | 
						
							| 591 |  | fvres |  |-  ( ( W ` i ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) = ( ( D ` n ) ` ( W ` i ) ) ) | 
						
							| 592 | 511 591 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) = ( ( D ` n ) ` ( W ` i ) ) ) | 
						
							| 593 | 592 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) ) | 
						
							| 594 | 593 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) ) | 
						
							| 595 | 516 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 596 | 465 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( D ` n ) e. ( RR -cn-> RR ) ) | 
						
							| 597 |  | rescncf |  |-  ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ RR -> ( ( D ` n ) e. ( RR -cn-> RR ) -> ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> RR ) ) ) | 
						
							| 598 | 595 596 597 | sylc |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> RR ) ) | 
						
							| 599 | 511 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) | 
						
							| 600 | 598 599 | cnlimci |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 601 | 594 600 | eqeltrd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 602 | 524 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) | 
						
							| 603 | 602 | resabs1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 604 | 603 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 605 | 604 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 606 | 605 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 607 | 390 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. RR ) | 
						
							| 608 | 404 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. RR ) | 
						
							| 609 | 294 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) < ( W ` ( i + 1 ) ) ) | 
						
							| 610 | 471 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( D ` n ) : RR --> CC ) | 
						
							| 611 | 610 595 | fssresd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) : ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) --> CC ) | 
						
							| 612 | 607 608 609 611 | limciccioolb |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 613 | 606 612 | eqtr2d |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 614 | 601 613 | eleqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 615 | 483 488 489 590 614 | mullimcf |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( R x. ( ( D ` n ) ` ( W ` i ) ) ) e. ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` i ) ) ) | 
						
							| 616 |  | eqidd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ) | 
						
							| 617 | 192 | adantl |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) /\ x = s ) -> ( F ` ( X + x ) ) = ( F ` ( X + s ) ) ) | 
						
							| 618 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) | 
						
							| 619 | 49 | adantr |  |-  ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> F : RR --> CC ) | 
						
							| 620 | 619 383 | ffvelcdmd |  |-  ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 621 | 620 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 622 | 616 617 618 621 | fvmptd |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) = ( F ` ( X + s ) ) ) | 
						
							| 623 | 622 | adantllr |  |-  ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) = ( F ` ( X + s ) ) ) | 
						
							| 624 |  | fvres |  |-  ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) = ( ( D ` n ) ` s ) ) | 
						
							| 625 | 624 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) = ( ( D ` n ) ` s ) ) | 
						
							| 626 | 623 625 | oveq12d |  |-  ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 627 | 626 | eqcomd |  |-  ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) | 
						
							| 628 | 627 | mpteq2dva |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) ) | 
						
							| 629 | 375 628 | eqtr2d |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) = ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 630 | 629 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` i ) ) = ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 631 | 615 630 | eleqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( R x. ( ( D ` n ) ` ( W ` i ) ) ) e. ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) | 
						
							| 632 | 455 426 | ltned |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) =/= ( Q ` ( i + 1 ) ) ) | 
						
							| 633 |  | eldifsn |  |-  ( ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) <-> ( ( X + x ) e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( X + x ) =/= ( Q ` ( i + 1 ) ) ) ) | 
						
							| 634 | 497 632 633 | sylanbrc |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) | 
						
							| 635 | 634 | ralrimiva |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) | 
						
							| 636 | 503 | rnmptss |  |-  ( A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) | 
						
							| 637 | 635 636 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) | 
						
							| 638 | 404 | leidd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) <_ ( W ` ( i + 1 ) ) ) | 
						
							| 639 | 390 404 404 510 638 | eliccd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) | 
						
							| 640 | 521 639 | cnlimci |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` ( i + 1 ) ) ) e. ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 641 |  | oveq2 |  |-  ( x = ( W ` ( i + 1 ) ) -> ( X + x ) = ( X + ( W ` ( i + 1 ) ) ) ) | 
						
							| 642 | 641 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( W ` ( i + 1 ) ) ) -> ( X + x ) = ( X + ( W ` ( i + 1 ) ) ) ) | 
						
							| 643 | 277 404 | readdcld |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` ( i + 1 ) ) ) e. RR ) | 
						
							| 644 | 506 642 639 643 | fvmptd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` ( i + 1 ) ) ) = ( X + ( W ` ( i + 1 ) ) ) ) | 
						
							| 645 | 644 424 | eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 646 | 528 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 647 | 390 404 294 539 | limcicciooub |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 648 | 646 647 | eqtr2d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 649 | 640 645 648 | 3eltr3d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 650 | 637 649 14 | limccog |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 651 | 587 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 652 | 650 651 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 653 | 652 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 654 | 639 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) | 
						
							| 655 | 598 654 | cnlimci |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` ( i + 1 ) ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 656 |  | fvres |  |-  ( ( W ` ( i + 1 ) ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` ( i + 1 ) ) ) = ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) | 
						
							| 657 | 654 656 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` ( i + 1 ) ) ) = ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) | 
						
							| 658 | 607 608 609 611 | limcicciooub |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 659 | 658 | eqcomd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 660 |  | resabs1 |  |-  ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 661 | 524 660 | mp1i |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) | 
						
							| 662 | 661 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 663 | 659 662 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 664 | 655 657 663 | 3eltr3d |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 665 | 483 488 489 653 664 | mullimcf |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( L x. ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 666 | 629 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 667 | 665 666 | eleqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( L x. ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) e. ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) | 
						
							| 668 | 130 133 225 226 16 114 300 211 369 478 631 667 | fourierdlem110 |  |-  ( ( ph /\ n e. NN ) -> S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x ) | 
						
							| 669 | 668 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x = S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x ) | 
						
							| 670 | 129 | recnd |  |-  ( ph -> ( -u _pi - X ) e. CC ) | 
						
							| 671 | 670 154 | subnegd |  |-  ( ph -> ( ( -u _pi - X ) - -u X ) = ( ( -u _pi - X ) + X ) ) | 
						
							| 672 | 156 154 | npcand |  |-  ( ph -> ( ( -u _pi - X ) + X ) = -u _pi ) | 
						
							| 673 | 671 672 | eqtrd |  |-  ( ph -> ( ( -u _pi - X ) - -u X ) = -u _pi ) | 
						
							| 674 | 132 | recnd |  |-  ( ph -> ( _pi - X ) e. CC ) | 
						
							| 675 | 674 154 | subnegd |  |-  ( ph -> ( ( _pi - X ) - -u X ) = ( ( _pi - X ) + X ) ) | 
						
							| 676 | 155 154 | npcand |  |-  ( ph -> ( ( _pi - X ) + X ) = _pi ) | 
						
							| 677 | 675 676 | eqtrd |  |-  ( ph -> ( ( _pi - X ) - -u X ) = _pi ) | 
						
							| 678 | 673 677 | oveq12d |  |-  ( ph -> ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) = ( -u _pi [,] _pi ) ) | 
						
							| 679 | 678 | itgeq1d |  |-  ( ph -> S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) | 
						
							| 680 | 679 | adantr |  |-  ( ( ph /\ n e. NN ) -> S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) | 
						
							| 681 | 669 680 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) | 
						
							| 682 |  | fveq2 |  |-  ( x = s -> ( G ` x ) = ( G ` s ) ) | 
						
							| 683 | 682 | cbvitgv |  |-  S. ( -u _pi (,) _pi ) ( G ` x ) _d x = S. ( -u _pi (,) _pi ) ( G ` s ) _d s | 
						
							| 684 | 211 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( -u _pi [,] _pi ) ) -> G : RR --> CC ) | 
						
							| 685 | 44 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) | 
						
							| 686 | 684 685 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. ( -u _pi [,] _pi ) ) -> ( G ` x ) e. CC ) | 
						
							| 687 | 76 77 686 | itgioo |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) | 
						
							| 688 |  | elioore |  |-  ( s e. ( -u _pi (,) _pi ) -> s e. RR ) | 
						
							| 689 | 688 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> s e. RR ) | 
						
							| 690 | 49 | adantr |  |-  ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> F : RR --> CC ) | 
						
							| 691 | 8 | adantr |  |-  ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> X e. RR ) | 
						
							| 692 | 688 | adantl |  |-  ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> s e. RR ) | 
						
							| 693 | 691 692 | readdcld |  |-  ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> ( X + s ) e. RR ) | 
						
							| 694 | 690 693 | ffvelcdmd |  |-  ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 695 | 694 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 696 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( D ` n ) : RR --> RR ) | 
						
							| 697 | 696 689 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 698 | 697 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( ( D ` n ) ` s ) e. CC ) | 
						
							| 699 | 695 698 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) | 
						
							| 700 | 689 699 197 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 701 | 700 | itgeq2dv |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( G ` s ) _d s = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 702 | 683 687 701 | 3eqtr3a |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( G ` x ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 703 | 224 681 702 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 704 | 75 178 703 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 705 | 77 | renegcld |  |-  ( ( ph /\ n e. NN ) -> -u _pi e. RR ) | 
						
							| 706 |  | 0red |  |-  ( ( ph /\ n e. NN ) -> 0 e. RR ) | 
						
							| 707 |  | 0re |  |-  0 e. RR | 
						
							| 708 |  | negpilt0 |  |-  -u _pi < 0 | 
						
							| 709 | 39 707 708 | ltleii |  |-  -u _pi <_ 0 | 
						
							| 710 | 709 | a1i |  |-  ( ( ph /\ n e. NN ) -> -u _pi <_ 0 ) | 
						
							| 711 |  | pipos |  |-  0 < _pi | 
						
							| 712 | 707 38 711 | ltleii |  |-  0 <_ _pi | 
						
							| 713 | 712 | a1i |  |-  ( ( ph /\ n e. NN ) -> 0 <_ _pi ) | 
						
							| 714 | 76 77 706 710 713 | eliccd |  |-  ( ( ph /\ n e. NN ) -> 0 e. ( -u _pi [,] _pi ) ) | 
						
							| 715 |  | ioossicc |  |-  ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) | 
						
							| 716 | 715 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) ) | 
						
							| 717 |  | ioombl |  |-  ( -u _pi (,) 0 ) e. dom vol | 
						
							| 718 | 717 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) e. dom vol ) | 
						
							| 719 | 49 | adantr |  |-  ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> F : RR --> CC ) | 
						
							| 720 | 8 | adantr |  |-  ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> X e. RR ) | 
						
							| 721 | 39 | a1i |  |-  ( s e. ( -u _pi [,] 0 ) -> -u _pi e. RR ) | 
						
							| 722 |  | 0red |  |-  ( s e. ( -u _pi [,] 0 ) -> 0 e. RR ) | 
						
							| 723 |  | id |  |-  ( s e. ( -u _pi [,] 0 ) -> s e. ( -u _pi [,] 0 ) ) | 
						
							| 724 |  | eliccre |  |-  ( ( -u _pi e. RR /\ 0 e. RR /\ s e. ( -u _pi [,] 0 ) ) -> s e. RR ) | 
						
							| 725 | 721 722 723 724 | syl3anc |  |-  ( s e. ( -u _pi [,] 0 ) -> s e. RR ) | 
						
							| 726 | 725 | adantl |  |-  ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> s e. RR ) | 
						
							| 727 | 720 726 | readdcld |  |-  ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> ( X + s ) e. RR ) | 
						
							| 728 | 719 727 | ffvelcdmd |  |-  ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 729 | 728 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( F ` ( X + s ) ) e. CC ) | 
						
							| 730 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( D ` n ) : RR --> RR ) | 
						
							| 731 | 725 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> s e. RR ) | 
						
							| 732 | 730 731 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 733 | 732 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( D ` n ) ` s ) e. CC ) | 
						
							| 734 | 729 733 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) | 
						
							| 735 | 731 734 197 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 736 | 735 | eqcomd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) | 
						
							| 737 | 736 | mpteq2dva |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( -u _pi [,] 0 ) |-> ( G ` s ) ) ) | 
						
							| 738 | 306 | oveq2d |  |-  ( ph -> ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) = ( s + T ) ) | 
						
							| 739 | 738 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) = ( s + T ) ) | 
						
							| 740 | 739 | fveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` ( s + T ) ) ) | 
						
							| 741 | 11 | a1i |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> G = ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) ) | 
						
							| 742 |  | oveq2 |  |-  ( x = ( s + T ) -> ( X + x ) = ( X + ( s + T ) ) ) | 
						
							| 743 | 742 | fveq2d |  |-  ( x = ( s + T ) -> ( F ` ( X + x ) ) = ( F ` ( X + ( s + T ) ) ) ) | 
						
							| 744 |  | fveq2 |  |-  ( x = ( s + T ) -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` ( s + T ) ) ) | 
						
							| 745 | 743 744 | oveq12d |  |-  ( x = ( s + T ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) ) | 
						
							| 746 | 745 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ s e. RR ) /\ x = ( s + T ) ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) ) | 
						
							| 747 |  | simpr |  |-  ( ( ph /\ s e. RR ) -> s e. RR ) | 
						
							| 748 | 317 | a1i |  |-  ( ( ph /\ s e. RR ) -> T e. RR ) | 
						
							| 749 | 747 748 | readdcld |  |-  ( ( ph /\ s e. RR ) -> ( s + T ) e. RR ) | 
						
							| 750 | 749 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( s + T ) e. RR ) | 
						
							| 751 | 49 | adantr |  |-  ( ( ph /\ s e. RR ) -> F : RR --> CC ) | 
						
							| 752 | 8 | adantr |  |-  ( ( ph /\ s e. RR ) -> X e. RR ) | 
						
							| 753 | 752 749 | readdcld |  |-  ( ( ph /\ s e. RR ) -> ( X + ( s + T ) ) e. RR ) | 
						
							| 754 | 751 753 | ffvelcdmd |  |-  ( ( ph /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) e. CC ) | 
						
							| 755 | 754 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) e. CC ) | 
						
							| 756 | 82 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( D ` n ) : RR --> RR ) | 
						
							| 757 | 756 750 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) e. RR ) | 
						
							| 758 | 757 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) e. CC ) | 
						
							| 759 | 755 758 | mulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) e. CC ) | 
						
							| 760 | 741 746 750 759 | fvmptd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` ( s + T ) ) = ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) ) | 
						
							| 761 | 154 | adantr |  |-  ( ( ph /\ s e. RR ) -> X e. CC ) | 
						
							| 762 | 747 | recnd |  |-  ( ( ph /\ s e. RR ) -> s e. CC ) | 
						
							| 763 | 319 | adantr |  |-  ( ( ph /\ s e. RR ) -> T e. CC ) | 
						
							| 764 | 761 762 763 | addassd |  |-  ( ( ph /\ s e. RR ) -> ( ( X + s ) + T ) = ( X + ( s + T ) ) ) | 
						
							| 765 | 764 | eqcomd |  |-  ( ( ph /\ s e. RR ) -> ( X + ( s + T ) ) = ( ( X + s ) + T ) ) | 
						
							| 766 | 765 | fveq2d |  |-  ( ( ph /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) = ( F ` ( ( X + s ) + T ) ) ) | 
						
							| 767 | 752 747 | readdcld |  |-  ( ( ph /\ s e. RR ) -> ( X + s ) e. RR ) | 
						
							| 768 |  | simpl |  |-  ( ( ph /\ s e. RR ) -> ph ) | 
						
							| 769 | 768 767 | jca |  |-  ( ( ph /\ s e. RR ) -> ( ph /\ ( X + s ) e. RR ) ) | 
						
							| 770 |  | eleq1 |  |-  ( x = ( X + s ) -> ( x e. RR <-> ( X + s ) e. RR ) ) | 
						
							| 771 | 770 | anbi2d |  |-  ( x = ( X + s ) -> ( ( ph /\ x e. RR ) <-> ( ph /\ ( X + s ) e. RR ) ) ) | 
						
							| 772 |  | oveq1 |  |-  ( x = ( X + s ) -> ( x + T ) = ( ( X + s ) + T ) ) | 
						
							| 773 | 772 | fveq2d |  |-  ( x = ( X + s ) -> ( F ` ( x + T ) ) = ( F ` ( ( X + s ) + T ) ) ) | 
						
							| 774 | 773 435 | eqeq12d |  |-  ( x = ( X + s ) -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) ) | 
						
							| 775 | 771 774 | imbi12d |  |-  ( x = ( X + s ) -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ ( X + s ) e. RR ) -> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) ) ) | 
						
							| 776 | 775 10 | vtoclg |  |-  ( ( X + s ) e. RR -> ( ( ph /\ ( X + s ) e. RR ) -> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) ) | 
						
							| 777 | 767 769 776 | sylc |  |-  ( ( ph /\ s e. RR ) -> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) | 
						
							| 778 | 766 777 | eqtrd |  |-  ( ( ph /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) = ( F ` ( X + s ) ) ) | 
						
							| 779 | 778 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) = ( F ` ( X + s ) ) ) | 
						
							| 780 | 4 15 | dirkerper |  |-  ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) = ( ( D ` n ) ` s ) ) | 
						
							| 781 | 780 | adantll |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) = ( ( D ` n ) ` s ) ) | 
						
							| 782 | 779 781 | oveq12d |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 783 |  | simpr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> s e. RR ) | 
						
							| 784 | 782 759 | eqeltrrd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) | 
						
							| 785 | 783 784 197 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 786 | 785 | eqcomd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) | 
						
							| 787 | 782 786 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) = ( G ` s ) ) | 
						
							| 788 | 740 760 787 | 3eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` s ) ) | 
						
							| 789 |  | 0ltpnf |  |-  0 < +oo | 
						
							| 790 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 791 |  | elioo2 |  |-  ( ( -u _pi e. RR* /\ +oo e. RR* ) -> ( 0 e. ( -u _pi (,) +oo ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 < +oo ) ) ) | 
						
							| 792 | 52 790 791 | mp2an |  |-  ( 0 e. ( -u _pi (,) +oo ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 < +oo ) ) | 
						
							| 793 | 707 708 789 792 | mpbir3an |  |-  0 e. ( -u _pi (,) +oo ) | 
						
							| 794 | 793 | a1i |  |-  ( ( ph /\ n e. NN ) -> 0 e. ( -u _pi (,) +oo ) ) | 
						
							| 795 | 16 225 114 300 211 788 478 631 667 76 794 | fourierdlem105 |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] 0 ) |-> ( G ` s ) ) e. L^1 ) | 
						
							| 796 | 737 795 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) | 
						
							| 797 | 716 718 734 796 | iblss |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi (,) 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) | 
						
							| 798 |  | elioore |  |-  ( s e. ( 0 (,) _pi ) -> s e. RR ) | 
						
							| 799 | 798 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> s e. RR ) | 
						
							| 800 | 799 784 | syldan |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) | 
						
							| 801 | 799 800 197 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 802 | 801 | eqcomd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) | 
						
							| 803 | 802 | mpteq2dva |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( 0 (,) _pi ) |-> ( G ` s ) ) ) | 
						
							| 804 |  | ioossicc |  |-  ( 0 (,) _pi ) C_ ( 0 [,] _pi ) | 
						
							| 805 | 804 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) | 
						
							| 806 |  | ioombl |  |-  ( 0 (,) _pi ) e. dom vol | 
						
							| 807 | 806 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) e. dom vol ) | 
						
							| 808 | 211 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 [,] _pi ) ) -> G : RR --> CC ) | 
						
							| 809 |  | 0red |  |-  ( ( ph /\ s e. ( 0 [,] _pi ) ) -> 0 e. RR ) | 
						
							| 810 | 38 | a1i |  |-  ( ( ph /\ s e. ( 0 [,] _pi ) ) -> _pi e. RR ) | 
						
							| 811 |  | simpr |  |-  ( ( ph /\ s e. ( 0 [,] _pi ) ) -> s e. ( 0 [,] _pi ) ) | 
						
							| 812 |  | eliccre |  |-  ( ( 0 e. RR /\ _pi e. RR /\ s e. ( 0 [,] _pi ) ) -> s e. RR ) | 
						
							| 813 | 809 810 811 812 | syl3anc |  |-  ( ( ph /\ s e. ( 0 [,] _pi ) ) -> s e. RR ) | 
						
							| 814 | 813 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 [,] _pi ) ) -> s e. RR ) | 
						
							| 815 | 808 814 | ffvelcdmd |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 [,] _pi ) ) -> ( G ` s ) e. CC ) | 
						
							| 816 |  | 0xr |  |-  0 e. RR* | 
						
							| 817 | 816 | a1i |  |-  ( ( ph /\ n e. NN ) -> 0 e. RR* ) | 
						
							| 818 | 790 | a1i |  |-  ( ( ph /\ n e. NN ) -> +oo e. RR* ) | 
						
							| 819 | 711 | a1i |  |-  ( ( ph /\ n e. NN ) -> 0 < _pi ) | 
						
							| 820 |  | ltpnf |  |-  ( _pi e. RR -> _pi < +oo ) | 
						
							| 821 | 38 820 | mp1i |  |-  ( ( ph /\ n e. NN ) -> _pi < +oo ) | 
						
							| 822 | 817 818 77 819 821 | eliood |  |-  ( ( ph /\ n e. NN ) -> _pi e. ( 0 (,) +oo ) ) | 
						
							| 823 | 16 225 114 300 211 788 478 631 667 706 822 | fourierdlem105 |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( 0 [,] _pi ) |-> ( G ` s ) ) e. L^1 ) | 
						
							| 824 | 805 807 815 823 | iblss |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( G ` s ) ) e. L^1 ) | 
						
							| 825 | 803 824 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) | 
						
							| 826 | 705 77 714 699 797 825 | itgsplitioo |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) | 
						
							| 827 | 704 826 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( S ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |