| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem112.f |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | fourierdlem112.d |  |-  D = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) | 
						
							| 3 |  | fourierdlem112.p |  |-  P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 4 |  | fourierdlem112.m |  |-  ( ph -> M e. NN ) | 
						
							| 5 |  | fourierdlem112.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 6 |  | fourierdlem112.n |  |-  N = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
							| 7 |  | fourierdlem112.v |  |-  V = ( iota f f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 8 |  | fourierdlem112.x |  |-  ( ph -> X e. RR ) | 
						
							| 9 |  | fourierdlem112.xran |  |-  ( ph -> X e. ran V ) | 
						
							| 10 |  | fourierdlem112.t |  |-  T = ( 2 x. _pi ) | 
						
							| 11 |  | fourierdlem112.fper |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 12 |  | fourierdlem112.fcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 13 |  | fourierdlem112.c |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> C e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 14 |  | fourierdlem112.u |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> U e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 15 |  | fourierdlem112.fdvcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 16 |  | fourierdlem112.e |  |-  ( ph -> E e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) | 
						
							| 17 |  | fourierdlem112.i |  |-  ( ph -> I e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) | 
						
							| 18 |  | fourierdlem112.l |  |-  ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) | 
						
							| 19 |  | fourierdlem112.r |  |-  ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) | 
						
							| 20 |  | fourierdlem112.a |  |-  A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 21 |  | fourierdlem112.b |  |-  B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 22 |  | fourierdlem112.z |  |-  Z = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 23 |  | fourierdlem112.23 |  |-  S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 24 |  | fourierdlem112.fbd |  |-  ( ph -> E. w e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 25 |  | fourierdlem112.fdvbd |  |-  ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 26 |  | fourierdlem112.25 |  |-  ( ph -> X e. RR ) | 
						
							| 27 |  | fveq2 |  |-  ( n = j -> ( A ` n ) = ( A ` j ) ) | 
						
							| 28 |  | oveq1 |  |-  ( n = j -> ( n x. X ) = ( j x. X ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( n = j -> ( cos ` ( n x. X ) ) = ( cos ` ( j x. X ) ) ) | 
						
							| 30 | 27 29 | oveq12d |  |-  ( n = j -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) ) | 
						
							| 31 |  | fveq2 |  |-  ( n = j -> ( B ` n ) = ( B ` j ) ) | 
						
							| 32 | 28 | fveq2d |  |-  ( n = j -> ( sin ` ( n x. X ) ) = ( sin ` ( j x. X ) ) ) | 
						
							| 33 | 31 32 | oveq12d |  |-  ( n = j -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) | 
						
							| 34 | 30 33 | oveq12d |  |-  ( n = j -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) | 
						
							| 35 | 34 | cbvmptv |  |-  ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) | 
						
							| 36 | 23 35 | eqtri |  |-  S = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) | 
						
							| 37 |  | seqeq3 |  |-  ( S = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) -> seq 1 ( + , S ) = seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ) | 
						
							| 38 | 36 37 | mp1i |  |-  ( ph -> seq 1 ( + , S ) = seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ) | 
						
							| 39 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 40 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 41 |  | nfv |  |-  F/ n ph | 
						
							| 42 |  | nfcv |  |-  F/_ n NN | 
						
							| 43 |  | nfcv |  |-  F/_ n ( -u _pi (,) 0 ) | 
						
							| 44 |  | nfcv |  |-  F/_ n ( F ` ( X + s ) ) | 
						
							| 45 |  | nfcv |  |-  F/_ n x. | 
						
							| 46 |  | nfcv |  |-  F/_ n ( ( D ` m ) ` s ) | 
						
							| 47 | 44 45 46 | nfov |  |-  F/_ n ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) | 
						
							| 48 | 43 47 | nfitg |  |-  F/_ n S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s | 
						
							| 49 | 42 48 | nfmpt |  |-  F/_ n ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) | 
						
							| 50 |  | nfcv |  |-  F/_ n ( 0 (,) _pi ) | 
						
							| 51 | 50 47 | nfitg |  |-  F/_ n S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s | 
						
							| 52 | 42 51 | nfmpt |  |-  F/_ n ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) | 
						
							| 53 |  | nfmpt1 |  |-  F/_ n ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) | 
						
							| 54 | 20 53 | nfcxfr |  |-  F/_ n A | 
						
							| 55 |  | nfcv |  |-  F/_ n 0 | 
						
							| 56 | 54 55 | nffv |  |-  F/_ n ( A ` 0 ) | 
						
							| 57 |  | nfcv |  |-  F/_ n / | 
						
							| 58 |  | nfcv |  |-  F/_ n 2 | 
						
							| 59 | 56 57 58 | nfov |  |-  F/_ n ( ( A ` 0 ) / 2 ) | 
						
							| 60 |  | nfcv |  |-  F/_ n + | 
						
							| 61 |  | nfcv |  |-  F/_ n ( 1 ... m ) | 
						
							| 62 | 61 | nfsum1 |  |-  F/_ n sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) | 
						
							| 63 | 59 60 62 | nfov |  |-  F/_ n ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 64 | 42 63 | nfmpt |  |-  F/_ n ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 65 | 22 64 | nfcxfr |  |-  F/_ n Z | 
						
							| 66 |  | eqid |  |-  ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 67 |  | picn |  |-  _pi e. CC | 
						
							| 68 | 67 | 2timesi |  |-  ( 2 x. _pi ) = ( _pi + _pi ) | 
						
							| 69 | 67 67 | subnegi |  |-  ( _pi - -u _pi ) = ( _pi + _pi ) | 
						
							| 70 | 68 10 69 | 3eqtr4i |  |-  T = ( _pi - -u _pi ) | 
						
							| 71 |  | pire |  |-  _pi e. RR | 
						
							| 72 | 71 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 73 | 72 | renegcld |  |-  ( ph -> -u _pi e. RR ) | 
						
							| 74 | 73 26 | readdcld |  |-  ( ph -> ( -u _pi + X ) e. RR ) | 
						
							| 75 | 72 26 | readdcld |  |-  ( ph -> ( _pi + X ) e. RR ) | 
						
							| 76 |  | negpilt0 |  |-  -u _pi < 0 | 
						
							| 77 |  | pipos |  |-  0 < _pi | 
						
							| 78 | 71 | renegcli |  |-  -u _pi e. RR | 
						
							| 79 |  | 0re |  |-  0 e. RR | 
						
							| 80 | 78 79 71 | lttri |  |-  ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) | 
						
							| 81 | 76 77 80 | mp2an |  |-  -u _pi < _pi | 
						
							| 82 | 81 | a1i |  |-  ( ph -> -u _pi < _pi ) | 
						
							| 83 | 73 72 26 82 | ltadd1dd |  |-  ( ph -> ( -u _pi + X ) < ( _pi + X ) ) | 
						
							| 84 |  | oveq1 |  |-  ( y = x -> ( y + ( k x. T ) ) = ( x + ( k x. T ) ) ) | 
						
							| 85 | 84 | eleq1d |  |-  ( y = x -> ( ( y + ( k x. T ) ) e. ran Q <-> ( x + ( k x. T ) ) e. ran Q ) ) | 
						
							| 86 | 85 | rexbidv |  |-  ( y = x -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( x + ( k x. T ) ) e. ran Q ) ) | 
						
							| 87 | 86 | cbvrabv |  |-  { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { x e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } | 
						
							| 88 | 87 | uneq2i |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { x e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
							| 89 | 70 3 4 5 74 75 83 66 88 6 7 | fourierdlem54 |  |-  ( ph -> ( ( N e. NN /\ V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) /\ V Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 90 | 89 | simpld |  |-  ( ph -> ( N e. NN /\ V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) ) | 
						
							| 91 | 90 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 92 | 90 | simprd |  |-  ( ph -> V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) | 
						
							| 93 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> F : RR --> RR ) | 
						
							| 94 |  | fveq2 |  |-  ( i = j -> ( p ` i ) = ( p ` j ) ) | 
						
							| 95 |  | oveq1 |  |-  ( i = j -> ( i + 1 ) = ( j + 1 ) ) | 
						
							| 96 | 95 | fveq2d |  |-  ( i = j -> ( p ` ( i + 1 ) ) = ( p ` ( j + 1 ) ) ) | 
						
							| 97 | 94 96 | breq12d |  |-  ( i = j -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( p ` j ) < ( p ` ( j + 1 ) ) ) ) | 
						
							| 98 | 97 | cbvralvw |  |-  ( A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) | 
						
							| 99 | 98 | anbi2i |  |-  ( ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) | 
						
							| 100 | 99 | a1i |  |-  ( p e. ( RR ^m ( 0 ... n ) ) -> ( ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) ) | 
						
							| 101 | 100 | rabbiia |  |-  { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } | 
						
							| 102 | 101 | mpteq2i |  |-  ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 103 | 3 102 | eqtri |  |-  P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) | 
						
							| 104 | 4 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> M e. NN ) | 
						
							| 105 | 5 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> Q e. ( P ` M ) ) | 
						
							| 106 | 11 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 107 |  | eleq1w |  |-  ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) | 
						
							| 108 | 107 | anbi2d |  |-  ( i = j -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ j e. ( 0 ..^ M ) ) ) ) | 
						
							| 109 |  | fveq2 |  |-  ( i = j -> ( Q ` i ) = ( Q ` j ) ) | 
						
							| 110 | 95 | fveq2d |  |-  ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) | 
						
							| 111 | 109 110 | oveq12d |  |-  ( i = j -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) | 
						
							| 112 | 111 | reseq2d |  |-  ( i = j -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) ) | 
						
							| 113 | 111 | oveq1d |  |-  ( i = j -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 114 | 112 113 | eleq12d |  |-  ( i = j -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) | 
						
							| 115 | 108 114 | imbi12d |  |-  ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) ) | 
						
							| 116 | 115 12 | chvarvv |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 117 | 116 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 118 | 74 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( -u _pi + X ) e. RR ) | 
						
							| 119 | 74 | rexrd |  |-  ( ph -> ( -u _pi + X ) e. RR* ) | 
						
							| 120 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 121 | 120 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 122 | 75 | ltpnfd |  |-  ( ph -> ( _pi + X ) < +oo ) | 
						
							| 123 | 119 121 75 83 122 | eliood |  |-  ( ph -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) | 
						
							| 125 |  | id |  |-  ( i e. ( 0 ..^ N ) -> i e. ( 0 ..^ N ) ) | 
						
							| 126 | 6 | oveq2i |  |-  ( 0 ..^ N ) = ( 0 ..^ ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) | 
						
							| 127 | 125 126 | eleqtrdi |  |-  ( i e. ( 0 ..^ N ) -> i e. ( 0 ..^ ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) ) | 
						
							| 128 | 127 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> i e. ( 0 ..^ ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) ) | 
						
							| 129 | 6 | oveq2i |  |-  ( 0 ... N ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) | 
						
							| 130 |  | isoeq4 |  |-  ( ( 0 ... N ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) -> ( f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 131 | 129 130 | ax-mp |  |-  ( f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 132 | 131 | iotabii |  |-  ( iota f f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 133 | 7 132 | eqtri |  |-  V = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
							| 134 | 93 103 70 104 105 106 117 118 124 128 133 | fourierdlem98 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 135 | 24 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. w e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 136 |  | nfra1 |  |-  F/ t A. t e. RR ( abs ` ( F ` t ) ) <_ w | 
						
							| 137 |  | elioore |  |-  ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> t e. RR ) | 
						
							| 138 |  | rspa |  |-  ( ( A. t e. RR ( abs ` ( F ` t ) ) <_ w /\ t e. RR ) -> ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 139 | 137 138 | sylan2 |  |-  ( ( A. t e. RR ( abs ` ( F ` t ) ) <_ w /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 140 | 139 | ex |  |-  ( A. t e. RR ( abs ` ( F ` t ) ) <_ w -> ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( F ` t ) ) <_ w ) ) | 
						
							| 141 | 136 140 | ralrimi |  |-  ( A. t e. RR ( abs ` ( F ` t ) ) <_ w -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 142 | 141 | reximi |  |-  ( E. w e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ w -> E. w e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 143 | 135 142 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. w e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( F ` t ) ) <_ w ) | 
						
							| 144 |  | ssid |  |-  RR C_ RR | 
						
							| 145 |  | dvfre |  |-  ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 146 | 1 144 145 | sylancl |  |-  ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 148 |  | eqid |  |-  ( RR _D F ) = ( RR _D F ) | 
						
							| 149 | 71 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> _pi e. RR ) | 
						
							| 150 | 78 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> -u _pi e. RR ) | 
						
							| 151 | 111 | reseq2d |  |-  ( i = j -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) ) | 
						
							| 152 | 151 113 | eleq12d |  |-  ( i = j -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) | 
						
							| 153 | 108 152 | imbi12d |  |-  ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) ) | 
						
							| 154 | 153 15 | chvarvv |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 155 | 154 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) | 
						
							| 156 | 73 8 | readdcld |  |-  ( ph -> ( -u _pi + X ) e. RR ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( -u _pi + X ) e. RR ) | 
						
							| 158 | 156 | rexrd |  |-  ( ph -> ( -u _pi + X ) e. RR* ) | 
						
							| 159 | 72 8 | readdcld |  |-  ( ph -> ( _pi + X ) e. RR ) | 
						
							| 160 | 73 72 8 82 | ltadd1dd |  |-  ( ph -> ( -u _pi + X ) < ( _pi + X ) ) | 
						
							| 161 | 159 | ltpnfd |  |-  ( ph -> ( _pi + X ) < +oo ) | 
						
							| 162 | 158 121 159 160 161 | eliood |  |-  ( ph -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) | 
						
							| 163 | 162 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) | 
						
							| 164 |  | oveq1 |  |-  ( k = h -> ( k x. T ) = ( h x. T ) ) | 
						
							| 165 | 164 | oveq2d |  |-  ( k = h -> ( y + ( k x. T ) ) = ( y + ( h x. T ) ) ) | 
						
							| 166 | 165 | eleq1d |  |-  ( k = h -> ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( h x. T ) ) e. ran Q ) ) | 
						
							| 167 | 166 | cbvrexvw |  |-  ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) | 
						
							| 168 | 167 | rgenw |  |-  A. y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) | 
						
							| 169 |  | rabbi |  |-  ( A. y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) <-> { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) | 
						
							| 170 | 168 169 | mpbi |  |-  { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } | 
						
							| 171 | 170 | uneq2i |  |-  ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) | 
						
							| 172 |  | isoeq5 |  |-  ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) ) | 
						
							| 173 | 171 172 | ax-mp |  |-  ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) | 
						
							| 174 | 173 | iotabii |  |-  ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) | 
						
							| 175 | 133 174 | eqtri |  |-  V = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) | 
						
							| 176 |  | eleq1w |  |-  ( v = u -> ( v e. dom ( RR _D F ) <-> u e. dom ( RR _D F ) ) ) | 
						
							| 177 |  | fveq2 |  |-  ( v = u -> ( ( RR _D F ) ` v ) = ( ( RR _D F ) ` u ) ) | 
						
							| 178 | 176 177 | ifbieq1d |  |-  ( v = u -> if ( v e. dom ( RR _D F ) , ( ( RR _D F ) ` v ) , 0 ) = if ( u e. dom ( RR _D F ) , ( ( RR _D F ) ` u ) , 0 ) ) | 
						
							| 179 | 178 | cbvmptv |  |-  ( v e. RR |-> if ( v e. dom ( RR _D F ) , ( ( RR _D F ) ` v ) , 0 ) ) = ( u e. RR |-> if ( u e. dom ( RR _D F ) , ( ( RR _D F ) ` u ) , 0 ) ) | 
						
							| 180 | 93 148 103 149 150 70 104 105 106 155 157 163 128 175 179 | fourierdlem97 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 181 |  | cncff |  |-  ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) | 
						
							| 182 |  | fdm |  |-  ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) | 
						
							| 183 | 180 181 182 | 3syl |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> dom ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) | 
						
							| 184 |  | ssdmres |  |-  ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) | 
						
							| 185 | 183 184 | sylibr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) | 
						
							| 186 | 147 185 | fssresd |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) | 
						
							| 187 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 188 | 187 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> RR C_ CC ) | 
						
							| 189 |  | cncfcdm |  |-  ( ( RR C_ CC /\ ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) <-> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) ) | 
						
							| 190 | 188 180 189 | syl2anc |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) <-> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) ) | 
						
							| 191 | 186 190 | mpbird |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) ) | 
						
							| 192 | 25 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 193 |  | nfv |  |-  F/ t ( ph /\ i e. ( 0 ..^ N ) ) | 
						
							| 194 |  | nfra1 |  |-  F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z | 
						
							| 195 | 193 194 | nfan |  |-  F/ t ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 196 |  | fvres |  |-  ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 197 | 196 | adantl |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 198 | 197 | fveq2d |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) | 
						
							| 199 | 198 | adantlr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) | 
						
							| 200 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 201 | 185 | sselda |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) | 
						
							| 202 | 201 | adantlr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) | 
						
							| 203 |  | rspa |  |-  ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 204 | 200 202 203 | syl2anc |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 205 | 199 204 | eqbrtrd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) | 
						
							| 206 | 205 | ex |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 207 | 195 206 | ralrimi |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) | 
						
							| 208 | 207 | ex |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 209 | 208 | reximdv |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 210 | 192 209 | mpd |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) | 
						
							| 211 |  | nfra1 |  |-  F/ t A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z | 
						
							| 212 | 196 | eqcomd |  |-  ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( ( RR _D F ) ` t ) = ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) | 
						
							| 213 | 212 | fveq2d |  |-  ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) = ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) ) | 
						
							| 214 | 213 | adantl |  |-  ( ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) = ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) ) | 
						
							| 215 |  | rspa |  |-  ( ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) | 
						
							| 216 | 214 215 | eqbrtrd |  |-  ( ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 217 | 216 | ex |  |-  ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) ) | 
						
							| 218 | 211 217 | ralrimi |  |-  ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 219 | 218 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) ) | 
						
							| 220 | 219 | reximdv |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) ) | 
						
							| 221 | 210 220 | mpd |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 222 |  | nfv |  |-  F/ i ( ph /\ j e. ( 0 ..^ M ) ) | 
						
							| 223 |  | nfcsb1v |  |-  F/_ i [_ j / i ]_ C | 
						
							| 224 | 223 | nfel1 |  |-  F/ i [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) | 
						
							| 225 | 222 224 | nfim |  |-  F/ i ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) | 
						
							| 226 |  | csbeq1a |  |-  ( i = j -> C = [_ j / i ]_ C ) | 
						
							| 227 | 112 109 | oveq12d |  |-  ( i = j -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) | 
						
							| 228 | 226 227 | eleq12d |  |-  ( i = j -> ( C e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) <-> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) ) | 
						
							| 229 | 108 228 | imbi12d |  |-  ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> C e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) ) ) | 
						
							| 230 | 225 229 13 | chvarfv |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) | 
						
							| 231 | 230 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) | 
						
							| 232 | 93 103 70 104 105 106 117 231 118 124 128 133 | fourierdlem96 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> if ( ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) = ( Q ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ C ) ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) | 
						
							| 233 |  | nfcsb1v |  |-  F/_ i [_ j / i ]_ U | 
						
							| 234 | 233 | nfel1 |  |-  F/ i [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) | 
						
							| 235 | 222 234 | nfim |  |-  F/ i ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) | 
						
							| 236 |  | csbeq1a |  |-  ( i = j -> U = [_ j / i ]_ U ) | 
						
							| 237 | 112 110 | oveq12d |  |-  ( i = j -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) | 
						
							| 238 | 236 237 | eleq12d |  |-  ( i = j -> ( U e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) <-> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) ) | 
						
							| 239 | 108 238 | imbi12d |  |-  ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> U e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) ) ) | 
						
							| 240 | 235 239 14 | chvarfv |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) | 
						
							| 241 | 240 | adantlr |  |-  ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) | 
						
							| 242 | 93 103 70 104 105 106 117 241 157 163 128 133 | fourierdlem99 |  |-  ( ( ph /\ i e. ( 0 ..^ N ) ) -> if ( ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) = ( Q ` ( ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) + 1 ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ U ) ` ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) | 
						
							| 243 |  | eqeq1 |  |-  ( g = s -> ( g = 0 <-> s = 0 ) ) | 
						
							| 244 |  | oveq2 |  |-  ( g = s -> ( X + g ) = ( X + s ) ) | 
						
							| 245 | 244 | fveq2d |  |-  ( g = s -> ( F ` ( X + g ) ) = ( F ` ( X + s ) ) ) | 
						
							| 246 |  | breq2 |  |-  ( g = s -> ( 0 < g <-> 0 < s ) ) | 
						
							| 247 | 246 | ifbid |  |-  ( g = s -> if ( 0 < g , R , L ) = if ( 0 < s , R , L ) ) | 
						
							| 248 | 245 247 | oveq12d |  |-  ( g = s -> ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) = ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) ) | 
						
							| 249 |  | id |  |-  ( g = s -> g = s ) | 
						
							| 250 | 248 249 | oveq12d |  |-  ( g = s -> ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) / s ) ) | 
						
							| 251 | 243 250 | ifbieq2d |  |-  ( g = s -> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) / s ) ) ) | 
						
							| 252 | 251 | cbvmptv |  |-  ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) / s ) ) ) | 
						
							| 253 |  | eqeq1 |  |-  ( o = s -> ( o = 0 <-> s = 0 ) ) | 
						
							| 254 |  | id |  |-  ( o = s -> o = s ) | 
						
							| 255 |  | oveq1 |  |-  ( o = s -> ( o / 2 ) = ( s / 2 ) ) | 
						
							| 256 | 255 | fveq2d |  |-  ( o = s -> ( sin ` ( o / 2 ) ) = ( sin ` ( s / 2 ) ) ) | 
						
							| 257 | 256 | oveq2d |  |-  ( o = s -> ( 2 x. ( sin ` ( o / 2 ) ) ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) | 
						
							| 258 | 254 257 | oveq12d |  |-  ( o = s -> ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) | 
						
							| 259 | 253 258 | ifbieq2d |  |-  ( o = s -> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) | 
						
							| 260 | 259 | cbvmptv |  |-  ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) | 
						
							| 261 |  | fveq2 |  |-  ( r = s -> ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) = ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` s ) ) | 
						
							| 262 |  | fveq2 |  |-  ( r = s -> ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) = ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` s ) ) | 
						
							| 263 | 261 262 | oveq12d |  |-  ( r = s -> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) = ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` s ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` s ) ) ) | 
						
							| 264 | 263 | cbvmptv |  |-  ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` s ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` s ) ) ) | 
						
							| 265 |  | oveq2 |  |-  ( d = s -> ( ( k + ( 1 / 2 ) ) x. d ) = ( ( k + ( 1 / 2 ) ) x. s ) ) | 
						
							| 266 | 265 | fveq2d |  |-  ( d = s -> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) ) | 
						
							| 267 | 266 | cbvmptv |  |-  ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) ) | 
						
							| 268 |  | fveq2 |  |-  ( z = s -> ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) ) | 
						
							| 269 |  | fveq2 |  |-  ( z = s -> ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) = ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` s ) ) | 
						
							| 270 | 268 269 | oveq12d |  |-  ( z = s -> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) = ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` s ) ) ) | 
						
							| 271 | 270 | cbvmptv |  |-  ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` s ) ) ) | 
						
							| 272 |  | fveq2 |  |-  ( m = n -> ( D ` m ) = ( D ` n ) ) | 
						
							| 273 | 272 | fveq1d |  |-  ( m = n -> ( ( D ` m ) ` s ) = ( ( D ` n ) ` s ) ) | 
						
							| 274 | 273 | oveq2d |  |-  ( m = n -> ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 275 | 274 | adantr |  |-  ( ( m = n /\ s e. ( -u _pi (,) 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 276 | 275 | itgeq2dv |  |-  ( m = n -> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 277 | 276 | cbvmptv |  |-  ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( n e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 278 |  | oveq1 |  |-  ( c = k -> ( c + ( 1 / 2 ) ) = ( k + ( 1 / 2 ) ) ) | 
						
							| 279 | 278 | oveq1d |  |-  ( c = k -> ( ( c + ( 1 / 2 ) ) x. d ) = ( ( k + ( 1 / 2 ) ) x. d ) ) | 
						
							| 280 | 279 | fveq2d |  |-  ( c = k -> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) | 
						
							| 281 | 280 | mpteq2dv |  |-  ( c = k -> ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) = ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ) | 
						
							| 282 | 281 | fveq1d |  |-  ( c = k -> ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) = ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) | 
						
							| 283 | 282 | oveq2d |  |-  ( c = k -> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) = ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) | 
						
							| 284 | 283 | mpteq2dv |  |-  ( c = k -> ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) = ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ) | 
						
							| 285 | 284 | fveq1d |  |-  ( c = k -> ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) = ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) ) | 
						
							| 286 | 285 | adantr |  |-  ( ( c = k /\ s e. ( -u _pi (,) 0 ) ) -> ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) = ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) ) | 
						
							| 287 | 286 | itgeq2dv |  |-  ( c = k -> S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s = S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s ) | 
						
							| 288 | 287 | oveq1d |  |-  ( c = k -> ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) = ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) | 
						
							| 289 | 288 | cbvmptv |  |-  ( c e. NN |-> ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) = ( k e. NN |-> ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) | 
						
							| 290 |  | oveq1 |  |-  ( y = s -> ( y mod ( 2 x. _pi ) ) = ( s mod ( 2 x. _pi ) ) ) | 
						
							| 291 | 290 | eqeq1d |  |-  ( y = s -> ( ( y mod ( 2 x. _pi ) ) = 0 <-> ( s mod ( 2 x. _pi ) ) = 0 ) ) | 
						
							| 292 |  | oveq2 |  |-  ( y = s -> ( ( m + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. s ) ) | 
						
							| 293 | 292 | fveq2d |  |-  ( y = s -> ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) ) | 
						
							| 294 |  | oveq1 |  |-  ( y = s -> ( y / 2 ) = ( s / 2 ) ) | 
						
							| 295 | 294 | fveq2d |  |-  ( y = s -> ( sin ` ( y / 2 ) ) = ( sin ` ( s / 2 ) ) ) | 
						
							| 296 | 295 | oveq2d |  |-  ( y = s -> ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) | 
						
							| 297 | 293 296 | oveq12d |  |-  ( y = s -> ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) | 
						
							| 298 | 291 297 | ifbieq2d |  |-  ( y = s -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) | 
						
							| 299 | 298 | cbvmptv |  |-  ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) | 
						
							| 300 |  | simpl |  |-  ( ( m = k /\ s e. RR ) -> m = k ) | 
						
							| 301 | 300 | oveq2d |  |-  ( ( m = k /\ s e. RR ) -> ( 2 x. m ) = ( 2 x. k ) ) | 
						
							| 302 | 301 | oveq1d |  |-  ( ( m = k /\ s e. RR ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 303 | 302 | oveq1d |  |-  ( ( m = k /\ s e. RR ) -> ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) ) | 
						
							| 304 | 300 | oveq1d |  |-  ( ( m = k /\ s e. RR ) -> ( m + ( 1 / 2 ) ) = ( k + ( 1 / 2 ) ) ) | 
						
							| 305 | 304 | oveq1d |  |-  ( ( m = k /\ s e. RR ) -> ( ( m + ( 1 / 2 ) ) x. s ) = ( ( k + ( 1 / 2 ) ) x. s ) ) | 
						
							| 306 | 305 | fveq2d |  |-  ( ( m = k /\ s e. RR ) -> ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) ) | 
						
							| 307 | 306 | oveq1d |  |-  ( ( m = k /\ s e. RR ) -> ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) = ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) | 
						
							| 308 | 303 307 | ifeq12d |  |-  ( ( m = k /\ s e. RR ) -> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) | 
						
							| 309 | 308 | mpteq2dva |  |-  ( m = k -> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) | 
						
							| 310 | 299 309 | eqtrid |  |-  ( m = k -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) | 
						
							| 311 | 310 | cbvmptv |  |-  ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) = ( k e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) | 
						
							| 312 | 2 311 | eqtri |  |-  D = ( k e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) | 
						
							| 313 |  | eqid |  |-  ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( -u _pi [,] l ) ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( -u _pi [,] l ) ) | 
						
							| 314 |  | eqid |  |-  ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) = ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) | 
						
							| 315 |  | eqid |  |-  ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) = ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) | 
						
							| 316 |  | isoeq1 |  |-  ( u = w -> ( u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) <-> w Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ) | 
						
							| 317 | 316 | cbviotavw |  |-  ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) = ( iota w w Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) | 
						
							| 318 |  | fveq2 |  |-  ( j = i -> ( V ` j ) = ( V ` i ) ) | 
						
							| 319 | 318 | oveq1d |  |-  ( j = i -> ( ( V ` j ) - X ) = ( ( V ` i ) - X ) ) | 
						
							| 320 | 319 | cbvmptv |  |-  ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) = ( i e. ( 0 ... N ) |-> ( ( V ` i ) - X ) ) | 
						
							| 321 |  | eqid |  |-  ( iota_ m e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` m ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( m + 1 ) ) ) ) = ( iota_ m e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` m ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( m + 1 ) ) ) ) | 
						
							| 322 |  | fveq2 |  |-  ( a = s -> ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) ) | 
						
							| 323 |  | oveq2 |  |-  ( a = s -> ( ( b + ( 1 / 2 ) ) x. a ) = ( ( b + ( 1 / 2 ) ) x. s ) ) | 
						
							| 324 | 323 | fveq2d |  |-  ( a = s -> ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) = ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) | 
						
							| 325 | 322 324 | oveq12d |  |-  ( a = s -> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) = ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) ) | 
						
							| 326 | 325 | cbvitgv |  |-  S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s | 
						
							| 327 | 326 | fveq2i |  |-  ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) | 
						
							| 328 | 327 | breq1i |  |-  ( ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) <-> ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) | 
						
							| 329 | 328 | anbi2i |  |-  ( ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) ) <-> ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) ) | 
						
							| 330 | 325 | cbvitgv |  |-  S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s | 
						
							| 331 | 330 | fveq2i |  |-  ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) | 
						
							| 332 | 331 | breq1i |  |-  ( ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) <-> ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) | 
						
							| 333 | 329 332 | anbi12i |  |-  ( ( ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) ) /\ ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) ) <-> ( ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) /\ ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) ) | 
						
							| 334 | 1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 277 289 19 18 16 17 312 313 314 315 317 320 321 333 | fourierdlem103 |  |-  ( ph -> ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ~~> ( L / 2 ) ) | 
						
							| 335 |  | nnex |  |-  NN e. _V | 
						
							| 336 | 335 | mptex |  |-  ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) e. _V | 
						
							| 337 | 22 336 | eqeltri |  |-  Z e. _V | 
						
							| 338 | 337 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 339 | 274 | adantr |  |-  ( ( m = n /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 340 | 339 | itgeq2dv |  |-  ( m = n -> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 341 | 340 | cbvmptv |  |-  ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( n e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 342 | 285 | adantr |  |-  ( ( c = k /\ s e. ( 0 (,) _pi ) ) -> ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) = ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) ) | 
						
							| 343 | 342 | itgeq2dv |  |-  ( c = k -> S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s = S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s ) | 
						
							| 344 | 343 | oveq1d |  |-  ( c = k -> ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) = ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) | 
						
							| 345 | 344 | cbvmptv |  |-  ( c e. NN |-> ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) = ( k e. NN |-> ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) | 
						
							| 346 |  | eqid |  |-  ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( e [,] _pi ) ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( e [,] _pi ) ) | 
						
							| 347 |  | eqid |  |-  ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) = ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) | 
						
							| 348 |  | eqid |  |-  ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) = ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) | 
						
							| 349 |  | isoeq1 |  |-  ( u = v -> ( u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) <-> v Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ) | 
						
							| 350 | 349 | cbviotavw |  |-  ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) = ( iota v v Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) | 
						
							| 351 |  | eqid |  |-  ( iota_ a e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` a ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( a + 1 ) ) ) ) = ( iota_ a e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` a ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( a + 1 ) ) ) ) | 
						
							| 352 | 325 | cbvitgv |  |-  S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s | 
						
							| 353 | 352 | fveq2i |  |-  ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) | 
						
							| 354 | 353 | breq1i |  |-  ( ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) <-> ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) | 
						
							| 355 | 354 | anbi2i |  |-  ( ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) ) <-> ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) ) | 
						
							| 356 | 325 | cbvitgv |  |-  S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s | 
						
							| 357 | 356 | fveq2i |  |-  ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) | 
						
							| 358 | 357 | breq1i |  |-  ( ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) <-> ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) | 
						
							| 359 | 355 358 | anbi12i |  |-  ( ( ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) ) /\ ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) ) <-> ( ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) /\ ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) ) | 
						
							| 360 | 1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 341 345 19 18 16 17 312 346 347 348 350 320 351 359 | fourierdlem104 |  |-  ( ph -> ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ~~> ( R / 2 ) ) | 
						
							| 361 |  | eqidd |  |-  ( ( ph /\ n e. NN ) -> ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) | 
						
							| 362 | 276 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ m = n ) -> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 363 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 364 |  | elioore |  |-  ( s e. ( -u _pi (,) 0 ) -> s e. RR ) | 
						
							| 365 | 1 | adantr |  |-  ( ( ph /\ s e. RR ) -> F : RR --> RR ) | 
						
							| 366 | 26 | adantr |  |-  ( ( ph /\ s e. RR ) -> X e. RR ) | 
						
							| 367 |  | simpr |  |-  ( ( ph /\ s e. RR ) -> s e. RR ) | 
						
							| 368 | 366 367 | readdcld |  |-  ( ( ph /\ s e. RR ) -> ( X + s ) e. RR ) | 
						
							| 369 | 365 368 | ffvelcdmd |  |-  ( ( ph /\ s e. RR ) -> ( F ` ( X + s ) ) e. RR ) | 
						
							| 370 | 369 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( F ` ( X + s ) ) e. RR ) | 
						
							| 371 | 2 | dirkerre |  |-  ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 372 | 371 | adantll |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 373 | 370 372 | remulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) | 
						
							| 374 | 364 373 | sylan2 |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) | 
						
							| 375 |  | ioossicc |  |-  ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) | 
						
							| 376 | 78 | leidi |  |-  -u _pi <_ -u _pi | 
						
							| 377 | 79 71 77 | ltleii |  |-  0 <_ _pi | 
						
							| 378 |  | iccss |  |-  ( ( ( -u _pi e. RR /\ _pi e. RR ) /\ ( -u _pi <_ -u _pi /\ 0 <_ _pi ) ) -> ( -u _pi [,] 0 ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 379 | 78 71 376 377 378 | mp4an |  |-  ( -u _pi [,] 0 ) C_ ( -u _pi [,] _pi ) | 
						
							| 380 | 375 379 | sstri |  |-  ( -u _pi (,) 0 ) C_ ( -u _pi [,] _pi ) | 
						
							| 381 | 380 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 382 |  | ioombl |  |-  ( -u _pi (,) 0 ) e. dom vol | 
						
							| 383 | 382 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) e. dom vol ) | 
						
							| 384 | 1 | adantr |  |-  ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) | 
						
							| 385 | 26 | adantr |  |-  ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> X e. RR ) | 
						
							| 386 | 73 72 | iccssred |  |-  ( ph -> ( -u _pi [,] _pi ) C_ RR ) | 
						
							| 387 | 386 | sselda |  |-  ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> s e. RR ) | 
						
							| 388 | 385 387 | readdcld |  |-  ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( X + s ) e. RR ) | 
						
							| 389 | 384 388 | ffvelcdmd |  |-  ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( F ` ( X + s ) ) e. RR ) | 
						
							| 390 | 389 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( F ` ( X + s ) ) e. RR ) | 
						
							| 391 |  | iccssre |  |-  ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) | 
						
							| 392 | 78 71 391 | mp2an |  |-  ( -u _pi [,] _pi ) C_ RR | 
						
							| 393 | 392 | sseli |  |-  ( s e. ( -u _pi [,] _pi ) -> s e. RR ) | 
						
							| 394 | 393 371 | sylan2 |  |-  ( ( n e. NN /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 395 | 394 | adantll |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 396 | 390 395 | remulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) | 
						
							| 397 | 78 | a1i |  |-  ( ( ph /\ n e. NN ) -> -u _pi e. RR ) | 
						
							| 398 | 71 | a1i |  |-  ( ( ph /\ n e. NN ) -> _pi e. RR ) | 
						
							| 399 | 1 | adantr |  |-  ( ( ph /\ n e. NN ) -> F : RR --> RR ) | 
						
							| 400 | 26 | adantr |  |-  ( ( ph /\ n e. NN ) -> X e. RR ) | 
						
							| 401 | 91 | adantr |  |-  ( ( ph /\ n e. NN ) -> N e. NN ) | 
						
							| 402 | 92 | adantr |  |-  ( ( ph /\ n e. NN ) -> V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) | 
						
							| 403 | 134 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ N ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 404 | 232 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ N ) ) -> if ( ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) = ( Q ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ C ) ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) | 
						
							| 405 | 242 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ N ) ) -> if ( ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) = ( Q ` ( ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) + 1 ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ U ) ` ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) | 
						
							| 406 | 2 | dirkercncf |  |-  ( n e. NN -> ( D ` n ) e. ( RR -cn-> RR ) ) | 
						
							| 407 | 406 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) e. ( RR -cn-> RR ) ) | 
						
							| 408 |  | eqid |  |-  ( s e. ( -u _pi [,] _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) | 
						
							| 409 | 397 398 399 400 66 401 402 403 404 405 320 3 407 408 | fourierdlem84 |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) | 
						
							| 410 | 381 383 396 409 | iblss |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi (,) 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) | 
						
							| 411 | 374 410 | itgcl |  |-  ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s e. CC ) | 
						
							| 412 | 361 362 363 411 | fvmptd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) = S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 413 | 412 411 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) e. CC ) | 
						
							| 414 |  | eqidd |  |-  ( ( ph /\ n e. NN ) -> ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) | 
						
							| 415 | 340 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ m = n ) -> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 416 | 1 | adantr |  |-  ( ( ph /\ s e. ( 0 (,) _pi ) ) -> F : RR --> RR ) | 
						
							| 417 | 26 | adantr |  |-  ( ( ph /\ s e. ( 0 (,) _pi ) ) -> X e. RR ) | 
						
							| 418 |  | elioore |  |-  ( s e. ( 0 (,) _pi ) -> s e. RR ) | 
						
							| 419 | 418 | adantl |  |-  ( ( ph /\ s e. ( 0 (,) _pi ) ) -> s e. RR ) | 
						
							| 420 | 417 419 | readdcld |  |-  ( ( ph /\ s e. ( 0 (,) _pi ) ) -> ( X + s ) e. RR ) | 
						
							| 421 | 416 420 | ffvelcdmd |  |-  ( ( ph /\ s e. ( 0 (,) _pi ) ) -> ( F ` ( X + s ) ) e. RR ) | 
						
							| 422 | 421 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( F ` ( X + s ) ) e. RR ) | 
						
							| 423 | 418 371 | sylan2 |  |-  ( ( n e. NN /\ s e. ( 0 (,) _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 424 | 423 | adantll |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) | 
						
							| 425 | 422 424 | remulcld |  |-  ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) | 
						
							| 426 |  | ioossicc |  |-  ( 0 (,) _pi ) C_ ( 0 [,] _pi ) | 
						
							| 427 | 78 79 76 | ltleii |  |-  -u _pi <_ 0 | 
						
							| 428 | 71 | leidi |  |-  _pi <_ _pi | 
						
							| 429 |  | iccss |  |-  ( ( ( -u _pi e. RR /\ _pi e. RR ) /\ ( -u _pi <_ 0 /\ _pi <_ _pi ) ) -> ( 0 [,] _pi ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 430 | 78 71 427 428 429 | mp4an |  |-  ( 0 [,] _pi ) C_ ( -u _pi [,] _pi ) | 
						
							| 431 | 426 430 | sstri |  |-  ( 0 (,) _pi ) C_ ( -u _pi [,] _pi ) | 
						
							| 432 | 431 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 433 |  | ioombl |  |-  ( 0 (,) _pi ) e. dom vol | 
						
							| 434 | 433 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) e. dom vol ) | 
						
							| 435 | 432 434 396 409 | iblss |  |-  ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) | 
						
							| 436 | 425 435 | itgcl |  |-  ( ( ph /\ n e. NN ) -> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s e. CC ) | 
						
							| 437 | 414 415 363 436 | fvmptd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) = S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) | 
						
							| 438 | 437 436 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) e. CC ) | 
						
							| 439 |  | eleq1w |  |-  ( m = n -> ( m e. NN <-> n e. NN ) ) | 
						
							| 440 | 439 | anbi2d |  |-  ( m = n -> ( ( ph /\ m e. NN ) <-> ( ph /\ n e. NN ) ) ) | 
						
							| 441 |  | fveq2 |  |-  ( m = n -> ( Z ` m ) = ( Z ` n ) ) | 
						
							| 442 | 276 340 | oveq12d |  |-  ( m = n -> ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) | 
						
							| 443 | 441 442 | eqeq12d |  |-  ( m = n -> ( ( Z ` m ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) <-> ( Z ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) ) | 
						
							| 444 | 440 443 | imbi12d |  |-  ( m = n -> ( ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) <-> ( ( ph /\ n e. NN ) -> ( Z ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) ) ) | 
						
							| 445 |  | oveq1 |  |-  ( n = m -> ( n x. x ) = ( m x. x ) ) | 
						
							| 446 | 445 | fveq2d |  |-  ( n = m -> ( cos ` ( n x. x ) ) = ( cos ` ( m x. x ) ) ) | 
						
							| 447 | 446 | oveq2d |  |-  ( n = m -> ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) = ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) ) | 
						
							| 448 | 447 | adantr |  |-  ( ( n = m /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) = ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) ) | 
						
							| 449 | 448 | itgeq2dv |  |-  ( n = m -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x ) | 
						
							| 450 | 449 | oveq1d |  |-  ( n = m -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x / _pi ) ) | 
						
							| 451 | 450 | cbvmptv |  |-  ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) = ( m e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x / _pi ) ) | 
						
							| 452 | 20 451 | eqtri |  |-  A = ( m e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x / _pi ) ) | 
						
							| 453 | 445 | fveq2d |  |-  ( n = m -> ( sin ` ( n x. x ) ) = ( sin ` ( m x. x ) ) ) | 
						
							| 454 | 453 | oveq2d |  |-  ( n = m -> ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) = ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) ) | 
						
							| 455 | 454 | adantr |  |-  ( ( n = m /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) = ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) ) | 
						
							| 456 | 455 | itgeq2dv |  |-  ( n = m -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x ) | 
						
							| 457 | 456 | oveq1d |  |-  ( n = m -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x / _pi ) ) | 
						
							| 458 | 457 | cbvmptv |  |-  ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) = ( m e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x / _pi ) ) | 
						
							| 459 | 21 458 | eqtri |  |-  B = ( m e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x / _pi ) ) | 
						
							| 460 |  | fveq2 |  |-  ( n = k -> ( A ` n ) = ( A ` k ) ) | 
						
							| 461 |  | oveq1 |  |-  ( n = k -> ( n x. X ) = ( k x. X ) ) | 
						
							| 462 | 461 | fveq2d |  |-  ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) | 
						
							| 463 | 460 462 | oveq12d |  |-  ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) | 
						
							| 464 |  | fveq2 |  |-  ( n = k -> ( B ` n ) = ( B ` k ) ) | 
						
							| 465 | 461 | fveq2d |  |-  ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) | 
						
							| 466 | 464 465 | oveq12d |  |-  ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) | 
						
							| 467 | 463 466 | oveq12d |  |-  ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 468 | 467 | cbvsumv |  |-  sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) | 
						
							| 469 | 468 | oveq2i |  |-  ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 470 | 469 | mpteq2i |  |-  ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) | 
						
							| 471 |  | oveq2 |  |-  ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) | 
						
							| 472 | 471 | sumeq1d |  |-  ( m = n -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 473 | 472 | oveq2d |  |-  ( m = n -> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) | 
						
							| 474 | 473 | cbvmptv |  |-  ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) | 
						
							| 475 |  | fveq2 |  |-  ( k = m -> ( A ` k ) = ( A ` m ) ) | 
						
							| 476 |  | oveq1 |  |-  ( k = m -> ( k x. X ) = ( m x. X ) ) | 
						
							| 477 | 476 | fveq2d |  |-  ( k = m -> ( cos ` ( k x. X ) ) = ( cos ` ( m x. X ) ) ) | 
						
							| 478 | 475 477 | oveq12d |  |-  ( k = m -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) = ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) ) | 
						
							| 479 |  | fveq2 |  |-  ( k = m -> ( B ` k ) = ( B ` m ) ) | 
						
							| 480 | 476 | fveq2d |  |-  ( k = m -> ( sin ` ( k x. X ) ) = ( sin ` ( m x. X ) ) ) | 
						
							| 481 | 479 480 | oveq12d |  |-  ( k = m -> ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) = ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) | 
						
							| 482 | 478 481 | oveq12d |  |-  ( k = m -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) | 
						
							| 483 | 482 | cbvsumv |  |-  sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) | 
						
							| 484 | 483 | oveq2i |  |-  ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) | 
						
							| 485 | 484 | mpteq2i |  |-  ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) ) | 
						
							| 486 | 474 485 | eqtri |  |-  ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) ) | 
						
							| 487 | 22 470 486 | 3eqtri |  |-  Z = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) ) | 
						
							| 488 |  | oveq2 |  |-  ( y = x -> ( X + y ) = ( X + x ) ) | 
						
							| 489 | 488 | fveq2d |  |-  ( y = x -> ( F ` ( X + y ) ) = ( F ` ( X + x ) ) ) | 
						
							| 490 |  | fveq2 |  |-  ( y = x -> ( ( D ` m ) ` y ) = ( ( D ` m ) ` x ) ) | 
						
							| 491 | 489 490 | oveq12d |  |-  ( y = x -> ( ( F ` ( X + y ) ) x. ( ( D ` m ) ` y ) ) = ( ( F ` ( X + x ) ) x. ( ( D ` m ) ` x ) ) ) | 
						
							| 492 | 491 | cbvmptv |  |-  ( y e. RR |-> ( ( F ` ( X + y ) ) x. ( ( D ` m ) ` y ) ) ) = ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` m ) ` x ) ) ) | 
						
							| 493 |  | eqid |  |-  ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi - X ) /\ ( p ` n ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi - X ) /\ ( p ` n ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 494 |  | fveq2 |  |-  ( j = i -> ( Q ` j ) = ( Q ` i ) ) | 
						
							| 495 | 494 | oveq1d |  |-  ( j = i -> ( ( Q ` j ) - X ) = ( ( Q ` i ) - X ) ) | 
						
							| 496 | 495 | cbvmptv |  |-  ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) | 
						
							| 497 | 452 459 487 2 3 4 5 8 1 11 492 12 13 14 10 493 496 | fourierdlem111 |  |-  ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) | 
						
							| 498 | 444 497 | chvarvv |  |-  ( ( ph /\ n e. NN ) -> ( Z ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) | 
						
							| 499 | 412 437 | oveq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) + ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) | 
						
							| 500 | 498 499 | eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( Z ` n ) = ( ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) + ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) ) ) | 
						
							| 501 | 41 49 52 65 39 40 334 338 360 413 438 500 | climaddf |  |-  ( ph -> Z ~~> ( ( L / 2 ) + ( R / 2 ) ) ) | 
						
							| 502 |  | limccl |  |-  ( ( F |` ( -oo (,) X ) ) limCC X ) C_ CC | 
						
							| 503 | 502 18 | sselid |  |-  ( ph -> L e. CC ) | 
						
							| 504 |  | limccl |  |-  ( ( F |` ( X (,) +oo ) ) limCC X ) C_ CC | 
						
							| 505 | 504 19 | sselid |  |-  ( ph -> R e. CC ) | 
						
							| 506 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 507 |  | 2pos |  |-  0 < 2 | 
						
							| 508 | 507 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 509 | 508 | gt0ne0d |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 510 | 503 505 506 509 | divdird |  |-  ( ph -> ( ( L + R ) / 2 ) = ( ( L / 2 ) + ( R / 2 ) ) ) | 
						
							| 511 | 501 510 | breqtrrd |  |-  ( ph -> Z ~~> ( ( L + R ) / 2 ) ) | 
						
							| 512 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 513 | 1 | adantr |  |-  ( ( ph /\ 0 e. NN0 ) -> F : RR --> RR ) | 
						
							| 514 |  | eqid |  |-  ( -u _pi (,) _pi ) = ( -u _pi (,) _pi ) | 
						
							| 515 |  | ioossre |  |-  ( -u _pi (,) _pi ) C_ RR | 
						
							| 516 | 515 | a1i |  |-  ( ph -> ( -u _pi (,) _pi ) C_ RR ) | 
						
							| 517 | 1 516 | feqresmpt |  |-  ( ph -> ( F |` ( -u _pi (,) _pi ) ) = ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) ) | 
						
							| 518 |  | ioossicc |  |-  ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) | 
						
							| 519 | 518 | a1i |  |-  ( ph -> ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 520 |  | ioombl |  |-  ( -u _pi (,) _pi ) e. dom vol | 
						
							| 521 | 520 | a1i |  |-  ( ph -> ( -u _pi (,) _pi ) e. dom vol ) | 
						
							| 522 | 1 | adantr |  |-  ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) | 
						
							| 523 | 386 | sselda |  |-  ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) | 
						
							| 524 | 522 523 | ffvelcdmd |  |-  ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( F ` x ) e. RR ) | 
						
							| 525 | 1 386 | feqresmpt |  |-  ( ph -> ( F |` ( -u _pi [,] _pi ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) ) | 
						
							| 526 | 187 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 527 | 1 526 | fssd |  |-  ( ph -> F : RR --> CC ) | 
						
							| 528 | 527 386 | fssresd |  |-  ( ph -> ( F |` ( -u _pi [,] _pi ) ) : ( -u _pi [,] _pi ) --> CC ) | 
						
							| 529 |  | ioossicc |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) | 
						
							| 530 | 78 | rexri |  |-  -u _pi e. RR* | 
						
							| 531 | 530 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) | 
						
							| 532 | 71 | rexri |  |-  _pi e. RR* | 
						
							| 533 | 532 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) | 
						
							| 534 | 3 4 5 | fourierdlem15 |  |-  ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 535 | 534 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) | 
						
							| 536 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 537 | 531 533 535 536 | fourierdlem8 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 538 | 529 537 | sstrid |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) | 
						
							| 539 | 538 | resabs1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 540 | 539 12 | eqeltrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 541 | 539 | eqcomd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 542 | 541 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 543 | 13 542 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> C e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 544 | 541 | oveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 545 | 14 544 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> U e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 546 | 3 4 5 528 540 543 545 | fourierdlem69 |  |-  ( ph -> ( F |` ( -u _pi [,] _pi ) ) e. L^1 ) | 
						
							| 547 | 525 546 | eqeltrrd |  |-  ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 548 | 519 521 524 547 | iblss |  |-  ( ph -> ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) | 
						
							| 549 | 517 548 | eqeltrd |  |-  ( ph -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) | 
						
							| 550 | 549 | adantr |  |-  ( ( ph /\ 0 e. NN0 ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) | 
						
							| 551 |  | simpr |  |-  ( ( ph /\ 0 e. NN0 ) -> 0 e. NN0 ) | 
						
							| 552 | 513 514 550 20 551 | fourierdlem16 |  |-  ( ( ph /\ 0 e. NN0 ) -> ( ( ( A ` 0 ) e. RR /\ ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) /\ S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( 0 x. x ) ) ) _d x e. RR ) ) | 
						
							| 553 | 552 | simplld |  |-  ( ( ph /\ 0 e. NN0 ) -> ( A ` 0 ) e. RR ) | 
						
							| 554 | 512 553 | mpan2 |  |-  ( ph -> ( A ` 0 ) e. RR ) | 
						
							| 555 | 554 | rehalfcld |  |-  ( ph -> ( ( A ` 0 ) / 2 ) e. RR ) | 
						
							| 556 | 555 | recnd |  |-  ( ph -> ( ( A ` 0 ) / 2 ) e. CC ) | 
						
							| 557 | 335 | mptex |  |-  ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) e. _V | 
						
							| 558 | 557 | a1i |  |-  ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) e. _V ) | 
						
							| 559 |  | simpr |  |-  ( ( ph /\ m e. NN ) -> m e. NN ) | 
						
							| 560 | 555 | adantr |  |-  ( ( ph /\ m e. NN ) -> ( ( A ` 0 ) / 2 ) e. RR ) | 
						
							| 561 |  | fzfid |  |-  ( ( ph /\ m e. NN ) -> ( 1 ... m ) e. Fin ) | 
						
							| 562 |  | simpll |  |-  ( ( ( ph /\ m e. NN ) /\ n e. ( 1 ... m ) ) -> ph ) | 
						
							| 563 |  | elfznn |  |-  ( n e. ( 1 ... m ) -> n e. NN ) | 
						
							| 564 | 563 | adantl |  |-  ( ( ( ph /\ m e. NN ) /\ n e. ( 1 ... m ) ) -> n e. NN ) | 
						
							| 565 |  | simpl |  |-  ( ( ph /\ n e. NN ) -> ph ) | 
						
							| 566 | 363 | nnnn0d |  |-  ( ( ph /\ n e. NN ) -> n e. NN0 ) | 
						
							| 567 |  | eleq1w |  |-  ( k = n -> ( k e. NN0 <-> n e. NN0 ) ) | 
						
							| 568 | 567 | anbi2d |  |-  ( k = n -> ( ( ph /\ k e. NN0 ) <-> ( ph /\ n e. NN0 ) ) ) | 
						
							| 569 |  | fveq2 |  |-  ( k = n -> ( A ` k ) = ( A ` n ) ) | 
						
							| 570 | 569 | eleq1d |  |-  ( k = n -> ( ( A ` k ) e. RR <-> ( A ` n ) e. RR ) ) | 
						
							| 571 | 568 570 | imbi12d |  |-  ( k = n -> ( ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. RR ) <-> ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. RR ) ) ) | 
						
							| 572 | 1 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> F : RR --> RR ) | 
						
							| 573 | 549 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) | 
						
							| 574 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 575 | 572 514 573 20 574 | fourierdlem16 |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( A ` k ) e. RR /\ ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) /\ S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) _d x e. RR ) ) | 
						
							| 576 | 575 | simplld |  |-  ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. RR ) | 
						
							| 577 | 571 576 | chvarvv |  |-  ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. RR ) | 
						
							| 578 | 565 566 577 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( A ` n ) e. RR ) | 
						
							| 579 | 363 | nnred |  |-  ( ( ph /\ n e. NN ) -> n e. RR ) | 
						
							| 580 | 579 400 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( n x. X ) e. RR ) | 
						
							| 581 | 580 | recoscld |  |-  ( ( ph /\ n e. NN ) -> ( cos ` ( n x. X ) ) e. RR ) | 
						
							| 582 | 578 581 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) e. RR ) | 
						
							| 583 |  | eleq1w |  |-  ( k = n -> ( k e. NN <-> n e. NN ) ) | 
						
							| 584 | 583 | anbi2d |  |-  ( k = n -> ( ( ph /\ k e. NN ) <-> ( ph /\ n e. NN ) ) ) | 
						
							| 585 |  | fveq2 |  |-  ( k = n -> ( B ` k ) = ( B ` n ) ) | 
						
							| 586 | 585 | eleq1d |  |-  ( k = n -> ( ( B ` k ) e. RR <-> ( B ` n ) e. RR ) ) | 
						
							| 587 | 584 586 | imbi12d |  |-  ( k = n -> ( ( ( ph /\ k e. NN ) -> ( B ` k ) e. RR ) <-> ( ( ph /\ n e. NN ) -> ( B ` n ) e. RR ) ) ) | 
						
							| 588 | 1 | adantr |  |-  ( ( ph /\ k e. NN ) -> F : RR --> RR ) | 
						
							| 589 | 549 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) | 
						
							| 590 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 591 | 588 514 589 21 590 | fourierdlem21 |  |-  ( ( ph /\ k e. NN ) -> ( ( ( B ` k ) e. RR /\ ( x e. ( -u _pi (,) _pi ) |-> ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) ) e. L^1 ) /\ S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) _d x e. RR ) ) | 
						
							| 592 | 591 | simplld |  |-  ( ( ph /\ k e. NN ) -> ( B ` k ) e. RR ) | 
						
							| 593 | 587 592 | chvarvv |  |-  ( ( ph /\ n e. NN ) -> ( B ` n ) e. RR ) | 
						
							| 594 | 580 | resincld |  |-  ( ( ph /\ n e. NN ) -> ( sin ` ( n x. X ) ) e. RR ) | 
						
							| 595 | 593 594 | remulcld |  |-  ( ( ph /\ n e. NN ) -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) e. RR ) | 
						
							| 596 | 582 595 | readdcld |  |-  ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. RR ) | 
						
							| 597 | 562 564 596 | syl2anc |  |-  ( ( ( ph /\ m e. NN ) /\ n e. ( 1 ... m ) ) -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. RR ) | 
						
							| 598 | 561 597 | fsumrecl |  |-  ( ( ph /\ m e. NN ) -> sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. RR ) | 
						
							| 599 | 560 598 | readdcld |  |-  ( ( ph /\ m e. NN ) -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. RR ) | 
						
							| 600 | 22 | fvmpt2 |  |-  ( ( m e. NN /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. RR ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 601 | 559 599 600 | syl2anc |  |-  ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 602 | 601 599 | eqeltrd |  |-  ( ( ph /\ m e. NN ) -> ( Z ` m ) e. RR ) | 
						
							| 603 | 602 | recnd |  |-  ( ( ph /\ m e. NN ) -> ( Z ` m ) e. CC ) | 
						
							| 604 |  | eqidd |  |-  ( ( ph /\ m e. NN ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) | 
						
							| 605 |  | oveq2 |  |-  ( n = m -> ( 1 ... n ) = ( 1 ... m ) ) | 
						
							| 606 | 605 | sumeq1d |  |-  ( n = m -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 607 | 606 | adantl |  |-  ( ( ( ph /\ m e. NN ) /\ n = m ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 608 |  | sumex |  |-  sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. _V | 
						
							| 609 | 608 | a1i |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. _V ) | 
						
							| 610 | 604 607 559 609 | fvmptd |  |-  ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` m ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 611 | 560 | recnd |  |-  ( ( ph /\ m e. NN ) -> ( ( A ` 0 ) / 2 ) e. CC ) | 
						
							| 612 | 598 | recnd |  |-  ( ( ph /\ m e. NN ) -> sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. CC ) | 
						
							| 613 | 611 612 | pncan2d |  |-  ( ( ph /\ m e. NN ) -> ( ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) - ( ( A ` 0 ) / 2 ) ) = sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 614 | 613 468 | eqtr2di |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 615 |  | ovex |  |-  ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. _V | 
						
							| 616 | 22 | fvmpt2 |  |-  ( ( m e. NN /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. _V ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 617 | 559 615 616 | sylancl |  |-  ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) | 
						
							| 618 | 617 | eqcomd |  |-  ( ( ph /\ m e. NN ) -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( Z ` m ) ) | 
						
							| 619 | 618 | oveq1d |  |-  ( ( ph /\ m e. NN ) -> ( ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) - ( ( A ` 0 ) / 2 ) ) = ( ( Z ` m ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 620 | 610 614 619 | 3eqtrd |  |-  ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` m ) = ( ( Z ` m ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 621 | 39 40 511 556 558 603 620 | climsubc1 |  |-  ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 622 |  | seqex |  |-  seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) e. _V | 
						
							| 623 | 622 | a1i |  |-  ( ph -> seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) e. _V ) | 
						
							| 624 |  | eqidd |  |-  ( ( ph /\ l e. NN ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) | 
						
							| 625 |  | oveq2 |  |-  ( n = l -> ( 1 ... n ) = ( 1 ... l ) ) | 
						
							| 626 | 625 | sumeq1d |  |-  ( n = l -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 627 | 626 | adantl |  |-  ( ( ( ph /\ l e. NN ) /\ n = l ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 628 |  | simpr |  |-  ( ( ph /\ l e. NN ) -> l e. NN ) | 
						
							| 629 |  | fzfid |  |-  ( ( ph /\ l e. NN ) -> ( 1 ... l ) e. Fin ) | 
						
							| 630 |  | elfznn |  |-  ( k e. ( 1 ... l ) -> k e. NN ) | 
						
							| 631 | 630 | nnnn0d |  |-  ( k e. ( 1 ... l ) -> k e. NN0 ) | 
						
							| 632 | 631 576 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( A ` k ) e. RR ) | 
						
							| 633 | 630 | nnred |  |-  ( k e. ( 1 ... l ) -> k e. RR ) | 
						
							| 634 | 633 | adantl |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> k e. RR ) | 
						
							| 635 | 8 | adantr |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> X e. RR ) | 
						
							| 636 | 634 635 | remulcld |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( k x. X ) e. RR ) | 
						
							| 637 | 636 | recoscld |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( cos ` ( k x. X ) ) e. RR ) | 
						
							| 638 | 632 637 | remulcld |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) e. RR ) | 
						
							| 639 | 630 592 | sylan2 |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( B ` k ) e. RR ) | 
						
							| 640 | 636 | resincld |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( sin ` ( k x. X ) ) e. RR ) | 
						
							| 641 | 639 640 | remulcld |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) e. RR ) | 
						
							| 642 | 638 641 | readdcld |  |-  ( ( ph /\ k e. ( 1 ... l ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) | 
						
							| 643 | 642 | adantlr |  |-  ( ( ( ph /\ l e. NN ) /\ k e. ( 1 ... l ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) | 
						
							| 644 | 629 643 | fsumrecl |  |-  ( ( ph /\ l e. NN ) -> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) | 
						
							| 645 | 624 627 628 644 | fvmptd |  |-  ( ( ph /\ l e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` l ) = sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 646 |  | eleq1w |  |-  ( n = l -> ( n e. NN <-> l e. NN ) ) | 
						
							| 647 | 646 | anbi2d |  |-  ( n = l -> ( ( ph /\ n e. NN ) <-> ( ph /\ l e. NN ) ) ) | 
						
							| 648 |  | fveq2 |  |-  ( n = l -> ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) | 
						
							| 649 | 626 648 | eqeq12d |  |-  ( n = l -> ( sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) <-> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) ) | 
						
							| 650 | 647 649 | imbi12d |  |-  ( n = l -> ( ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) ) <-> ( ( ph /\ l e. NN ) -> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) ) ) | 
						
							| 651 |  | eqidd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) | 
						
							| 652 |  | fveq2 |  |-  ( j = k -> ( A ` j ) = ( A ` k ) ) | 
						
							| 653 |  | oveq1 |  |-  ( j = k -> ( j x. X ) = ( k x. X ) ) | 
						
							| 654 | 653 | fveq2d |  |-  ( j = k -> ( cos ` ( j x. X ) ) = ( cos ` ( k x. X ) ) ) | 
						
							| 655 | 652 654 | oveq12d |  |-  ( j = k -> ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) | 
						
							| 656 |  | fveq2 |  |-  ( j = k -> ( B ` j ) = ( B ` k ) ) | 
						
							| 657 | 653 | fveq2d |  |-  ( j = k -> ( sin ` ( j x. X ) ) = ( sin ` ( k x. X ) ) ) | 
						
							| 658 | 656 657 | oveq12d |  |-  ( j = k -> ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) | 
						
							| 659 | 655 658 | oveq12d |  |-  ( j = k -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 660 | 659 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ j = k ) -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 661 |  | elfznn |  |-  ( k e. ( 1 ... n ) -> k e. NN ) | 
						
							| 662 | 661 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) | 
						
							| 663 |  | simpll |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) | 
						
							| 664 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 665 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 666 | 665 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> k e. RR ) | 
						
							| 667 | 8 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> X e. RR ) | 
						
							| 668 | 666 667 | remulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( k x. X ) e. RR ) | 
						
							| 669 | 668 | recoscld |  |-  ( ( ph /\ k e. NN0 ) -> ( cos ` ( k x. X ) ) e. RR ) | 
						
							| 670 | 576 669 | remulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) e. RR ) | 
						
							| 671 | 664 670 | sylan2 |  |-  ( ( ph /\ k e. NN ) -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) e. RR ) | 
						
							| 672 | 664 668 | sylan2 |  |-  ( ( ph /\ k e. NN ) -> ( k x. X ) e. RR ) | 
						
							| 673 | 672 | resincld |  |-  ( ( ph /\ k e. NN ) -> ( sin ` ( k x. X ) ) e. RR ) | 
						
							| 674 | 592 673 | remulcld |  |-  ( ( ph /\ k e. NN ) -> ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) e. RR ) | 
						
							| 675 | 671 674 | readdcld |  |-  ( ( ph /\ k e. NN ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) | 
						
							| 676 | 663 662 675 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) | 
						
							| 677 | 651 660 662 676 | fvmptd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ` k ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) | 
						
							| 678 | 363 39 | eleqtrdi |  |-  ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 679 | 676 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. CC ) | 
						
							| 680 | 677 678 679 | fsumser |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) ) | 
						
							| 681 | 650 680 | chvarvv |  |-  ( ( ph /\ l e. NN ) -> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) | 
						
							| 682 | 645 681 | eqtrd |  |-  ( ( ph /\ l e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` l ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) | 
						
							| 683 | 39 558 623 40 682 | climeq |  |-  ( ph -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) <-> seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) ) | 
						
							| 684 | 621 683 | mpbid |  |-  ( ph -> seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 685 | 38 684 | eqbrtrd |  |-  ( ph -> seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 686 |  | eqidd |  |-  ( ( ph /\ n e. NN ) -> ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) | 
						
							| 687 |  | fveq2 |  |-  ( j = n -> ( A ` j ) = ( A ` n ) ) | 
						
							| 688 |  | oveq1 |  |-  ( j = n -> ( j x. X ) = ( n x. X ) ) | 
						
							| 689 | 688 | fveq2d |  |-  ( j = n -> ( cos ` ( j x. X ) ) = ( cos ` ( n x. X ) ) ) | 
						
							| 690 | 687 689 | oveq12d |  |-  ( j = n -> ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) = ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) ) | 
						
							| 691 |  | fveq2 |  |-  ( j = n -> ( B ` j ) = ( B ` n ) ) | 
						
							| 692 | 688 | fveq2d |  |-  ( j = n -> ( sin ` ( j x. X ) ) = ( sin ` ( n x. X ) ) ) | 
						
							| 693 | 691 692 | oveq12d |  |-  ( j = n -> ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) = ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) | 
						
							| 694 | 690 693 | oveq12d |  |-  ( j = n -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 695 | 694 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ j = n ) -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 696 | 686 695 363 596 | fvmptd |  |-  ( ( ph /\ n e. NN ) -> ( ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ` n ) = ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) | 
						
							| 697 | 596 | recnd |  |-  ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. CC ) | 
						
							| 698 | 39 40 696 697 684 | isumclim |  |-  ( ph -> sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) | 
						
							| 699 | 698 | oveq2d |  |-  ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) ) | 
						
							| 700 | 503 505 | addcld |  |-  ( ph -> ( L + R ) e. CC ) | 
						
							| 701 | 700 | halfcld |  |-  ( ph -> ( ( L + R ) / 2 ) e. CC ) | 
						
							| 702 | 556 701 | pncan3d |  |-  ( ph -> ( ( ( A ` 0 ) / 2 ) + ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) = ( ( L + R ) / 2 ) ) | 
						
							| 703 | 699 702 | eqtrd |  |-  ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) | 
						
							| 704 | 685 703 | jca |  |-  ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |